

UNIVERSITI TEKNOLOGI MARA

**MECHANICAL AND THERMAL PROPERTIES OF
COMPOSITE BOARD PREPARED BY USING HIGH DENSITY
POLYETHYLENE (HDPE) AND SAW DUST WITH ADDITION
OF MALEIC ANYHRIDE (MA) AS COUPLING AGENT**

NURUL ALIAD BINTI ROSHAIZI

BACHELOR OF ENGINEERING (HONS) CHEMICAL

JANUARY 2019

ACKNOWLEDGEMENT

Alhamdulillah, I would like to praise and express my highest gratitude to Allah SWT for endless blessings, giving me an opportunity to study at Universiti Teknologi MARA and strength in completing my research project together with thesis successfully.

My deepest appreciation goes to my supervisor Associate Professor Dr Farid Mulana for his valuable guidance, aspiring support, patience and motivation during the whole period of completing this research project.

I am very grateful to my parents, Roshaizi Yasin and ..., for their love, prayers, support and unwavering belief in me throughout my life. Thank you for giving me strength to reach for the stars and chase my dreams. Both of you are my inspiration and I dedicate this thesis to you.

Tremendous and deep thanks to my life partner, Amir Aimran Sumardi for being a great supporter and has unconditionally loved me during my good and bad times.

I warmly thank and appreciate my dearest siblings, grandparents, uncles, aunties and the whole family for their prayers and encouragement.

I would like to express my gratitude to my best mate, Nurul Fatihah for her helps since 2012 until now. Thank you for being with me through thick and thin.

Last but not least, I wish to express my sincere appreciation to Faculty of Chemical Engineering, UiTM Shah Alam for all the facilities provided and big thanks to all those who have one way or another helped me in making this study success.

ABSTRACT

Increasing amount of agriculture waste in Malaysia recent years has brought many environmental issues and economic concerns in the country. This study presents the excessive wood sawdust was recycled and used as organic filler and high density polyethylene (HDPE) as polymer matrix in produces the sample of composite board with the addition of maleic anhydride (MA) as coupling agent. Fillers and matrix were weight according to the percent formulation of 20:70, 30:60, 40:50 and 50:40 respectively. Though, the amount of coupling agent added was fixed to 10% of total weight of every sample. The composites were prepared by using hot press which needs to produce different molding for every mechanical properties and small amount of each sample were taken and their mechanical properties for flexural and tensile strength were studied. In conclusion, both flexural strength and tensile strength were found to improve with addition of coupling agent in composites which was related to improved interfacial bonding between the natural fibers as filler and the HDPE as a polymer matrix.

TABLE OF CONTENTS

CHAPTER 1	6
1.1 INTRODUCTION	6
1.2 PROBLEM STATEMENT	7
1.3 OBJECTIVES	8
1.4 SCOPE OF STUDY.....	9
CHAPTER 2	10
2.1 INTRODUCTION	10
2.1.1 Plastic Waste	11
2.1.2 Agriculture Waste	11
2.2 COMPOSITE BOARD.....	12
2.2.1 Strength.....	13
2.2.2 Weakness	13
2.2.3 Application of Composite Board	14
2.3.1 High Density Polyethylene	15
2.3.2 Properties of High Density Polyethylene	17
2.3.3 Usage of High Density Polyethylene	18
2.4 NATURAL FIBRE FILLER.....	19
2.4.1 Type of Natural Fibre.....	19
2.4.2 Sawdust	19
2.5 COUPLING AGENT	21
2.5.1 Types of Coupling Agent.....	22
2.5.2 Maleic Anhydride (MA)	23
CHAPTER 3	26
3.1 MATERIAL.....	26
3.2 EQUIPMENT	26
3.3 PREPARATION OF COMPOSITE BOARD	27
3.3.1 Preparation of Filler	27
3.3.2 Compounding without Coupling Agent	27
3.4 TESTING AND ANALYSIS.....	29
3.4.1 Introduction	29
3.4.2 Bending Testing	29
3.4.3 Tensile Testing.....	30
3.4.4 Thermogravimetric Analysis (TGA).....	31
3.4.5 Water Absorption Test	33

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

A combination between polymer and wood is an innovation that has been designed diligently during 1970's. As the result of combination from those two components, it has produces a material with intrinsic properties of innovated wood with having many advantages. Since then, the revolution of wood plastic composite (WPC) has been introduced to the industry. Nowadays, the idea of wood plastic composite getting broader as all kind of composites with the presence of natural fibres together with polymer is refer as wood plastic composites (WPC) [1]. As the primary elements are very contrast in chemical and physical properties, this kind of composite typically contains other enhancer to increase the harmony which might be bonding across the reaction of the polymer and natural fibres. Regarding the preferences necessity of what kind of polymer compatible with the composites which typically shown that thermoplastics are favoured compared to others because they provide the benefit of the possibility in repeated melting processes, contrast with thermosetting polymers that most likely become stagnant in solid state after an initial increased temperature of one processing cycle which will cause the polymerization. As the natural fibres and polymer is using twin screw extruder for mixing and obtaining the mixed composites, thermoplastics are the most suitable choice as it convenience to be used. Therefore, after the composites acquired, the procedure proceed with pressing the composites under certain temperature to accomplish the desired outputs. The massive development of the innovation between natural fibres and polymer has come out with WPC which consequences parallel with progression in both approach and technologies, as the synchronization of the development for conventional products as it new designs.

Though, mechanical properties of polymer matrix and natural fibres fillers where high density polyethylene and sawdust composites such as bending strength shows an anticipating improvement with the higher percent of high density polyethylene as polymer matrix. Regardless the effect of the coupling agent presence, with the higher percent of high density polyethylene in the composite board as a polymer matrix, the bending strength properties should become better. This is due to the high density polyethylene characteristics which is more flexible and possess high melting point. However, to improve the composites board