UNIVERSITI TEKNOLOGI MARA

FTIR ANALYSIS ON MODIFIED KAPOK FIBER VIA ESTERIFICATION FOR PALM OIL MILL EFFLUENT (POME) TREATMENT

AZLEEN HAZIERA BINTI HISHAMUDDIN

This report is submitted in partial fulfillment of the requirements needed for the award of **Bachelor in Chemical Engineering (Hons).**

FACULTY OF CHEMICAL ENGINEERING

JULY 2017

ABSTRACT

Palm oil mill effluent is a waste product from the palm oil industry and it was considered as a drawback to the environment. This effluent was highly polluted and many studies have been conducted in order to determine the most economical and environmental friendly scheme for palm oil mill (POME) treatment. The objectives for this research were to modify the kapok fiber using esterification technique and to analyze the unmodified and modified kapok fiber using Fourier Transform Infrared (FTIR) spectroscopy. The kapok fiber was modified by using esterification reaction with the different percentages of catalyst (5% w/w, 10% w/w and 15% w/w). The modified kapok fiber was analyzed by using Fourier Transform Infrared (FTIR) spectroscopy to observe the functional groups presented after modification and the results were compared with the unmodified kapok fiber. Based on the FTIR spectra, the ester group was formed at the range of 1733-1737 cm⁻¹ for the esterified kapok fiber for all of the percentages of catalyst. Meanwhile, the alcohol O-H stretching was presented at the region of 3329-3346 cm⁻¹ both for unmodified and modified kapok fiber. However, the alcohol O-H stretch in esterified kapok fiber has reduced due to the reaction between the alcohols with stearic acid to form an ester. The best modification was by using the 5% of calcium oxide as the result showed the highest formation of ester which was 90.5%T. In conclusion, it shows that the esterification reaction has successfully modified the characteristic of the unmodified kapok fiber.

ACKNOWLEDGEMENT

First and foremost, all praise to Allah the Almighty, where without His blessing and guidance I would not have the strength and will to complete this Research Project 1. Special thanks to my supervisor, Mdm Nor Halaliza Alias for all her time and effort that she dedicated in ensuring that my project would be one of the best there is. Her advice and ideas for my project are very helpful.

My next appreciation goes to Dr Siti Noor Suzila Maqsood ul Haque as the coordinator for the Research Project 2. Her coordination for my project is very encouraging as I can manage my progress report within the time given.

Other than that, I would like to thanks the laboratory assistants, Mdm Rohaida from Instrument Laboratory and Mr Mohd Faeez from Fluid Mechanics Laboratory, who has helped me with the handling of FTIR spectroscopy for my analysis and set up apparatus for my experiment. Their effort in helping my project is deeply appreciated.

Besides, I would like to dedicate special thanks to my seniors and friends that always been helpful and supportive. Without them, I would not have the strength to complete this project.

Last but not least, thanks to others that has directly or indirectly involved in the completion of this project. Their invaluable help, assistance and guidance in finishing this Research Project 1 will always be in our thoughts.

TABLE OF CONTENTS

	Page
SUPERVISOR'S CERTIFICATION	i-ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi-vii
LIST OF TABLES	viii
LIST OF FIGURES	ix-x
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xii
CHAPTER ONE: INTRODUCTION	1
1.1 Background Study	1-2
1.2 Problem Statement	3
1.3 Objectives	3
1.4 Scope of Work	3
CHAPTER TWO: LITERATURE REVIEW	4
2.1 Palm Oil Mill Effluent (POME)	4-8
2.2 Methods and Technologies Applied in POME Treatment	8-14
2.3 Modified Kapok Fiber by Esterification	14-16
2.4 Fourier Transform Infrared (FTIR) Spectroscopy Analysis	16-19
CHAPTER THREE: METHODOLOGY	20
3.1 Preparation of Kapok Fiber	20-21
3.2 FTIR Analysis on Unmodified and Modified Kapok Fiber	21-22

CHAPTER 1

INTRODUCTION

1.1 Background study

Palm oil industry is being a major industry as it produces raw material for other industrial sector and it is becoming one of the income that contributes to the Malaysian economy. This industry is still in progress as it is undergoing a lot of research and development mainly in Malaysian Palm Oil Board (MPOB) as to make a new product that will be marketing worldwide (Nazatul and Khairul, 2014).

Before getting the crude palm oil product, the fruit needs to undergo a lot of processes or stages such as extraction, sterilization, stripping, digestion, pressing, clarification, purification and vacuum drying. The process of extraction required a huge amount of water. For 1.5 m³ of water, it is equivalent to 1 t of fresh fruit bunch. Meanwhile, half of the water ends up as palm oil mill effluent (Soh, *et. al.*, 2013).

Palm oil mill effluent (POME) is a viscous brown liquid accumulated with fine suspended solids. It is acidic as the pH number is in between 4 and 5. This effluent is highly polluted wastewater that contaminates the environment directly and indirectly through many ways. Due to the variety of mill operations and seasonal cropping throughout the year, the chemical properties of POME are different (Anwar, et. al., 2014). If the untreated POME is discharged into watercourses, there will be a major problem towards the environment and thus there were many studies to determine the most economical and environmental friendly schemes for POME treatment.

According to Jeremiah, et. al., (2014), there were various effluent treatments which are presently applied by the palm oil industry in Malaysia such as anaerobic or facultative ponds, tank digestion with mechanical aeration, facultative ponds with tank digestion, facultative ponds with decanter and physic-chemical with biological treatment. The ponding system is the most adapted one in Malaysia's palm oil mill. However, it is not an effective effluent treatment as the concentration oil residue in palm oil mill is high than in toxic wastewater. As for anaerobic ponds, the uses of microbial populations are still in progress studies by the researchers.