ROUTE OPTIMIZATION USING SHORTEST PATH METHOD

MUHAMAD FAISAL AMIN BIN SHAKRI

Thesis submitted in fulfilment of the requirement for the degree of Bachelor of Science Mathematical Modelling and Analytics (Hons.) College of Computing, Informatics and Mathematics Universiti Teknologi Mara

February 2025

ABSTRACT

Route optimization is very important for industry and e-commerce. Strategic planning in road selection helps to reduce many costs such as time and transportation. Therefore, the effectiveness of route planning is very essential. The method to study route optimization is called shortest path method. To address the shortest path problem in Terengganu, specifically simulation on parcel delivery route from J&T Gong Badak to J&T Chendering without any stop point. This study investigated the implementation and comparison between well known shortest path method which are Dijkstra's algorithm, Bellman-Ford, and A* algorithm. This study starts with constructing the weighted graph from the simulation case using Google Maps, the intersection of the junction will be the vertices and road segments are edges, weighted are distances. Each algorithm was tested to compute the shortest path, with results indicating that while all algorithms arrive at the same optimal route, their efficiency differs. A* algorithm, benefitting from the heuristic value helps to reduce the number of nodes travel hence got the higher nodes efficiency. Dijkstra's algorithm and Bellman-Ford also perform well but show lower results in certain aspects. As the algorithm optimization is crucial for the sustainability and effective logistic operation, this study concludes that A* algorithm is the most efficient in this case.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to Allah S.W.T for granting me the strength, patience, and determination to complete this Final Year Project.

I wish to extend my heartfelt thanks to my supervisor, madam Royahati binti Mat Ripin, for her invaluable guidance, constructive feedback, and continuous encouragement throughout the course of this project. Her expertise and mentorship have been instrumental in shaping the direction and quality of my work.

I am also deeply grateful to my parents, family, and friends for their unwavering support, prayers, and motivation. Their belief in me has been a source of inspiration during challenging times.

This project has been a significant learning experience, and I am sincerely grateful to everyone who has contributed to its completion.

TABLE OF CONTENTS

DECLARATION BY THE SUPERVISOR	I
DECLARATION BY THE CANDIDATE	п
ABSTRACT	ш
ACKNOWLEDGEMENT	IV
TABLE OF CONTENTS	V
LIST OF TABLES	VIII
LIST OF FIGURES	IX
INTRODUCTION OF RESEARCH	1
1.1 Introduction	1
1.2 Background of study	1
1.3 Problem Statement	4
1.4 Objectives	5
1.5 Significance of Project	5
1.6 Scope of Project	6
1.7 Project Benefits	8
1.8 Definition of Terms and Concepts	9
1.9 Organization of Project	10
LITERATURE REVIEW	12
2.1 Introduction	12

2.2 Application of Dijkstra, Bellman-Ford and A* in shortest path	12
METHODOLOGY	17
3.1 Introduction	17
3.2 Research Step	17
3.2.1 Dijkstra's Algorithm	19
3.2.2 Bellman-Ford Algorithm	20
3.2.3 A* Algorithm	21
IMPLEMENTATION	23
4.1 Introduction	23
4.2 Implementation of Shortest Path Algorithm	26
4.2.1 Dijkstra Algorithm	26
4.2.2 Bellman-Ford Algorithm	30
4.2.3 A* Algorithm	36
RESULT AND DISCUSSION	44
5.1 Introduction	44
5.2 Result for Dijkstra's algorithm	44
5.3 Result for Bellman-Ford	45
5.4 Result for A* Algorithm	46
5.5 Comparing the Method	47
5.5.1 Algorithm Shortest Path Result	47
5.5.2 Algorithm Iteration	49