

TITLE:

ASSESSING FISH FARM WASTEWATER AS A SUSTAINABLE GROWTH MEDIUM FOR NANNOCHLOROPSIS sp.

SUPERVISOR:

MADAM NORZILA BINTI MOHD

SCHOOL OF CHEMICAL ENGINEERING COLLEGE OF ENGINEERING

2024

AUTHOR'S DECLARATION

" I hereby declare that this report is the result of my own work except for quotations and summaries which have been duly acknowledged."

Name of Student	:	Nor Firdia Dayana binti Mohammad Fadzil
Student I.D. No.	:	2022846454
Programme	:	Diploma in Chemical Engineering
College/School	:	College of Engineering/School of Chemical Engineering
Signature of Student	:	
Date	:	1/1/2025

ABSTRACT

The rapid expansion of aquaculture has led to increased nutrient-rich wastewater generation, posing environmental challenges and necessitating sustainable waste management solutions. This study investigates the feasibility of using fish farm wastewater as a sustainable, cost-effective medium for cultivating Nannochloropsis sp., a promising microalga for biofuel and aquaculture applications. Two formulations were compared: 100% fish farm wastewater (FF) and a blend of 50% fish farm wastewater with 50% commercial media (50%FF+50%CM). Growth profiles, kinetics, and the elemental composition of dried biomass were evaluated over 20 days. The 100% FF medium exhibited a short lag phase (days 0-4) followed by an exponential phase that reached a maximum biomass of 0.4 g L⁻¹ before declining. In contrast, 50%FF+50%CM, with an extended adaptation period, gave a more pronounced exponential phase that produced approximately 0.618 g L^{-1} biomass. Improved growth kinetics for 50%FF+50%CM was supported by a higher specific growth rate, shorter cell division time, and increased biomass productivity. The elemental profile presented higher nitrogen and carbon in the 50%FF+50%CM biomass, reflecting better nutrient uptake and metabolic activity. Overall, supplementing fish farm wastewater with commercial nutrients can significantly enhance microalgal growth and productivity. This offers a promising integrated approach to aquaculture wastewater treatment in addition to finding a sustainable growth medium for microalgae.

TABLE OF CONTENTS

AUTHOR'S DECLARATION ABSTRACT TABLE OF CONTENTS		2
		3
		4
СНА	APTER ONE BACKGROUND	6
1.1	Introduction	6
1.2	Literature Review	7
	1.2.1 LR subtopic 1	7
	1.2.2 LR subtopic 2	7
	1.2.3 LR subtopic 3	8
1.3	Problem Statement	8
1.4	Objectives	10
1.5	Scope of Study	10
CHAPTER TWO METHODOLOGY		11
2.1	Introduction	11
2.2	Materials	12
2.3	Apparatus	15
2.4	Instruments	18
2.5	Preparation of Media	20
2.6	Cultivation of Microalgae	20
2.7	Dry Weight Measurement	21
СНА	APTER THREE RESULT AND DISCUSIION	23
3.1	Introduction	22
3.2	Characterization of Media	23

REFERENCES		31
4.2	Recommendation	30
4.1	Conclusion	29
CHA	PTER FOUR CONCLUSION AND RECOMMENDATION	30
3.6	Elemental Profiling	27
3.5	Growth Kinetic	26
3.3	Growth Profile	24