UNIVERSITI TEKNOLOGI MARA

FABRICATION OF A PORTABLE 3D HOLOGRAM PROJECTOR

AIESYAH SOFIEA BINTI MOHD SUPLI

Dissertation submitted in partial fulfillment of the requirements for the degree of **Diploma** (Mechanical Engineering)

College of Engineering

Feb 2025

ABSTRACT

This project explores the development of portable 3D hologram projector to increase students' engagement and interest in learning. Traditional 3D projectors are bulky and heavy, making them difficult to port and install. Setting up projector requires significant effort and technical knowledge, which limits their usability in various environments. The aim of this project is to develop and manufacture a compact and user-friendly 3D hologram projector. This device can display high quality 3D images, constructed with sturdy yet lightweight 1100 aluminum alloy as the casing, which promises easy transportation and installation. This innovative solution aims to overcome the limitations of traditional 3D projectors and make them suitable for education, training and marketing applications.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to God for granting me the strength, perseverance, and wisdom to complete this work. Without His guidance, this journey would not have been possible. I am immensely grateful to my supervisor, Ts Dr Nurulsaidatulsyida Binti Sulong, for their invaluable support, guidance, and encouragement throughout this project. Their expertise and insights have been instrumental in shaping this work, and I feel truly privileged to have had their mentorship. Special thanks to my colleagues and friends for helping me with this project. Finally, I wish to thank my parents for their endless love, patience, and unwavering belief in me. Their sacrifices and encouragement have been the foundation of my success, and I am forever grateful for their presence in my life. Alhamdulillah.

TABLE OF CONTENTS

		Page			
CON	NFIRMATION BY SUPERVISOR	ii			
AUTHOR'S DECLARATION		iii			
ABSTRACT		iv			
ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES		v vi viii ix			
			LIST	Γ OF ABBREVIATIONS	xi
			CHA	APTER ONE : INTRODUCTION	1
			1.1	Background of Study	1
1.2	Problem Statement	3			
1.3	Objectives	3			
1.4	Scope of Study	3			
1.5	Significance of Study	4			
CHAPTER TWO: LITERATURE REVIEW		6			
2.1	Benchmarking/Comparison with Available Products	6			
2.2	Review of Related Manufacturing Process	9			
2.3	Patent and Intellectual Properties	13			
2.4	Summary of Literature	16			
CHA	APTER THREE : METHODOLOGY	17			
3.1	Overall Process Flow	17			
3.2	Detail Drawing	18			
3.3	Engineering Calculation and Analysis	19			
3.4	Bill of Materials and Costing	21			
3.5	Fabrication Process	22			

CHAPTER ONE INTRODUCTION

1.1 Background of Study

In the age of digitalization, the use of 3D hologram technology has been widespread throughout decades. By using light interference and diffraction to record and reconstruct light waves emitted from an object, holography is a 3D display technique that can display a natural 3D image in close proximity to the actual object without the need for scanning or synchronization processing. This technology makes it possible to display items without physical availability. As shown in Figure 1.1 (a), a 3D holographic LED fan uses an optical illusion technique called POV (Persistence of Vision) to project holograms that appear to float in the air at Figure 1.1 (b). The holograms are generated by many tiny, bright light-emitting diodes integrated into the fan blades and change color within milliseconds. The hologram fan comes with two or four blades; Each blade's LEDs are programmed to emit light at precise times and in precise sequences to display the entire hologram [1].

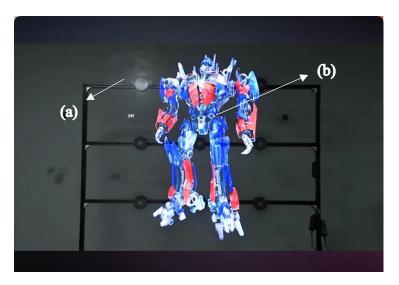


Figure 1.1 3D hologram fan model HD-F65 [2]

The idea of developing a portable 3D hologram projector came from observing a decline in student engagement and interest in traditional learning methods. In engineering, for example, students often find it more effective to visualize complex