DESIGN AND ANALYSIS THE CMOS GAIN BOOSTING FOR TELESCOPIC AMPLIFIER

Thesis presented in partial fulfilment for the award of the Bachelor in Electrical Engineering (Hons)
UNIVERSITI TEKNOLOGI MARA

DAZIHAYU BINTI HAMDAN Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 Shah Alam, Malaysia MAY 2007

ACKNOWLEDGEMENT

All praises be to mighty Allah S.W.T., the Most Gracious, Most Merciful and Most Beneficent for giving me strength and blessing me through out the entire research and completion of this project. Peace upon our Prophet Muhammad S.A.W. who has given light to mankind.

Firstly, I wish to express my sincere appreciation and gratitude to my supervisor, Assoc Prof. Zulkifli bin Abd Majid whose suggestions and directions have a major influence on all aspects of this thesis and for the consistent consultation and invaluable advice throughout the preparation and completion of the project. It was a great pleasure for me to undergo this learning experience.

Secondly, special thanks to Dr. Adzilah Saparon and Mrs Putri Sarah who act as a panel and willing to spent their golden time to evaluate my project. I also would like to thank to En Mahmud Ibrahim for his cooperation, continuous support, guidance and willingness in sharing knowledge toward the accomplishing in this project.

Deep appreciation to my family, especially to my beloved parent, National March 1996 (Abbath

and for his financial support, prayers, expectations and love in nurturing me to be who I am today.

Last but not least, credits to all my friends for their ideas, suggestions and assistance in completing this project. Thanks to all that provide minor and major contribution which has been the constant source of this thesis.

"May Allah bless and reward them for their kindness"

ABSTRACT

This project is to design a CMOS gain booster of telescopic amplifier (GBTA) based on the given specification such as supply voltage equal to +5V, capacitance load equal to 10Pf, DC voltage gain is 5000V (74dB), and low power consumption that equal to 2mW. Some calculations and I-V characteristic analysis have been done to determine the W/L of the CMOS transistor to obtain the result of the specifications based on generic 1.25µm technology. PSPICE tools are used to simulate and verify the design. Finally, the schematic of the CMOS gain booster of telescopic are obtained and the functional of the GBTA is tested to the basic differential amplifier.

TABLE OF CONTENTS

CHAPTER	LIST OF TITLE		
	DECLARATION		
	DEDICATION		
	ACK	NOWLEDGEMENT	iii
	ABSTRACT		iv
	TAB	LE OF CONTENTS	v
	LIST OF FIGURES LIST OF TABLES		viii
			x
	ABB	REVIATIONS	xi
1.0	INTRODUCTION		
	1.1	Introduction	1
		1.1.1 Operational Amplifier	1
		1.1.2 The Used Operational Amplifier in ADC Topologies	2
	1.2	Objective of Project	3
	1.3	Scope of the Project Report	4
	1.4	Organization of the Thesis	4
2.0	LITERATURE REVIEW		
	2.1	Introduction	5
	2.2	Analog Integrated Circuit Design	5
	2.3	What is Amplifier?	8
		2.3.1 Single Ended	8
		2.3.2 Differential	9
		2.3.3 Isolated	11

CHAPTER 1

INTRODUCTION

1.1 Introduction

1.1.1 Operational Amplifier

In general, an operational amplifier (op-amp) is consisting of a three circuit stage as shown in Figure 1.1:

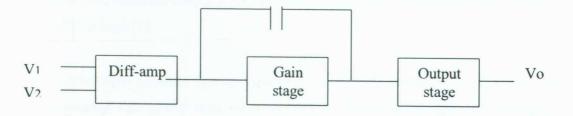


Figure 1.1: General block diagram of an operational amplifier.

The first stage is differential amplifier, the second stage provides additional voltage gain and the third stage provides current gain and low output impedance. A feedback capacitor is included in the second stage to provide frequency compensation. In some MOSFET circuits, only the first two stages are used. For a differential amplifier, current source biasing and loads are considered. Darlington pair is used as a second gain stage and the class AB output stage is used for operational amplifier circuits. Finally, this individual building block will be formed to combine the operational amplifier.

The op-amp is one of the most versatile and important building blocks in many analog and mixed signals systems. Op-amps is an analog system that always in a different level of complexity that is used to realize functions ranging from dc bias generation to high speed amplification or filtering. As the supply voltage and transistor channel length scale down with each generation of complementary