UNIVERSITI TEKNOLOGI MARA

FINITE ELEMENT ANALYSIS ON DEVELOPMENT OF ECO-FRIENDLY SWATH FOR SUSTAINABLE RECREATIONAL PURPOSES

SYED MUHAMMAD ZAHEIR BIN SYED HARMAN

Dissertation submitted in partial fulfilment of the requirements for the degree of **Diploma in Mechanical Engineering**

College of Engineering

February 2025

ABSTRACT

This project investigated the structural analysis of a Small Waterplane Area Twin Hull (SWATH) vessel using Finite Element Analysis (FEA), focusing on total deformation and equivalent Von-Mises stress. Due to the growing popularity of leisure boating, the necessity for environmentally friendly and structurally efficient marine vehicles has increased. The research assessed the vessel's structural integrity by analyzing its deformation and stress distribution under various loading conditions. To assess material performance, optimize structural elements, and guarantee adherence to safety and sustainability regulations, FEA simulations were carried out. Material optimization operational conditions simulation, and detailed SWATH structure modelling were all part of the study. The findings provide details on the vessel's capacity to tolerate operational strains while reducing deformation. The building of safer and more effective marine leisure boats is aided by this structural analysis study.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my diploma and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor, Ts. Dr. Shahrul Hisyam Marwan and also Sir Matzaini Katon who guide me through this final year project.

Finally, this dissertation is dedicated to my father and mother for their vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah's.

TABLE OF CONTENTS

		Page
CON	NFIRMATION BY SUPERVISOR	ii
AUTHOR'S DECLARATION		iii
ABSTRACT		iv
ACF	KNOWLEDGEMENT	v
TAE	BLE OF CONTENTS	vi
LIST	Γ OF TABLES	viii
LIST OF FIGURES		ix
LIST	T OF ABBREVIATIONS	X
СНА	APTER ONE: INTRODUCTION	1
1.1	Background of study	2-1
1.2	Problem statement	3-4
1.3	Objective	4
1.4	Scope of Work	5
1.5	Significant of Study	5
СНА	APTER TWO : LITERATURE REVIEW	6
2.1	SWATH Boats	6
2.2	Sustainable marine protection	7
2.3	SWATH Technology and Design Principles	8
2.4	Finite Element Analysis in SWATH Design	9
2.5	Eco-Friendly Design Considerations	10

CHA	APTER THREE : METHODOLOGY	11
3.1	Geometric Definition	11
3.2	Material Properties	12-13
3.3	Mesh Generation	14
3.4	Boundary Conditions	15-16
3.5	Solutions	16-17
3.6	Post-processing	17
3.7	Flow Chart	18
CHA	APTER FOUR: RESULT AND DISCUSSION	19
4.1	Introduction	19
4.2	Solutions and Results for Total Deformation	19-20
4.3	Solutions and Results for Equivalent (von Mises) Stress	20-21
4.4	Discussion	21
СНА	PTER FIVE: CONCLUSION AND RECOMMENDATIONS	22
5.1	Conclusions	22
5.2	Recommendations	22
REFERENCES		23
APP	ENDIX	24
6.1 Gantt Chart		24-25