UNIVERSITI TEKNOLOGI MARA

PRODUCTION DEVOLOPMENT OF ECO-FRIENDLY SWATH

MUHAMMAD AIZUDDIN BIN ALINUDIN

Dissertation submitted in partial fulfilment of the requirements for the degree of **Diploma in Mechanical Engineering**

College of Engineering

February 2025

ABSTRACT

This dissertation of eco-friendly Small Waterplane Area Twin Hull (SWATH) boat for sustainable recreational activities is focusing on developing a design and construction of its model. The SWATH design advantages are its improved stability, decreased wave impact, and energy efficiency. This technology is known with slim twin hulls which is a promising substitute for traditional monohull designs. Using Computer Aided Design software like PolyCAD and Rhinoceros 3D have been utilized in the design development. In addition, the construction process utilizing cuttingedge fabrication methods like 3D printing. The prototype's outcomes show that 3D printing is a reliable method for producing highly accurate and effective vessel designs. For some reasons, there's few problems related to constructed model are also covered in this dissertation along with recommendations for enhancements for subsequent projects. A more sustainable future for recreational boating can be achieve by this study which highlights the potential of green technologies for a range of marine engineering applications.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my diploma and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor, MS. NUR AIN BINTI ABD RAHMAN.

Finally, this dissertation is dedicated to my father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah's.

TABLE OF CONTENTS

		Page
CON	NFIRMATION BY SUPERVISOR	i
AUT	ΓHOR'S DECLARATION	ii
ABS	STRACT	iii
ACF	KNOWLEDGEMENT	iv
TAE	BLE OF CONTENTS	v
LIST	T OF TABLES	vii
LIST	T OF FIGURES	viii
CHA	APTER 1: INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objectives	3
СНА	APTER 2: LITERATURE REVIEW	4
2.1	Introduction	4
2.2	Product Dissection	5
	2.2.1 Recreational Boat	6
2.3	Benchmarking	8
CHA	APTER 3: METHODOLOGY	10
3.1	Flow Chart	10
3.2	Preliminary Result	11
	3.2.1 Customer Requirements	11
	3.2.2 Production Design Specifications	13
3.3	Concept Generation	14
	3.3.1 Physical Decomposition	15
	3.3.2 Design Concept	15
3.4	Pugh Chart	19

3.5	Fabrication Method	
	3.5.1 3D-Printing Guide	21
СНА	APTER 4: RESULTS AND DISCUSSION	24
4.1	Introduction	24
4.2	Detail Drawings	24
	4.2.1 Detail Drawing of Whole Hull	24
	4.2.2 Detail Drawing of Hull Components	27
4.3	Final Result	30
4.4	Discussion	33
СНА	APTER 5: CONCLUSION AND RECOMMENDATIONS	34
5.1	Conclusions	34
5.2	Recommendations	34
Refe	rences	35