

TITLE:

THERMAL STABILITY K/AC AND Na/AC CATALYST FOR BIODIESEL PRODUCTION

SUPERVISOR:

TS. NORKAMRUZITA SAADON

SCHOOL OF CHEMICAL ENGINEERING COLLEGE OF ENGINEERING

2024

AUTHOR'S DECLARATION

" I hereby declare that this report is the Result of my own work except for quotations and summaries which have been duly acknowledged."

Name of Student	:	AZ IMAN ZIKRI BIN AZMILA
Student I.D. No.	Ē.	2022822566
Programme	÷	Diploma in Chemical Engineering
College/School		College of Engineering/School of Chemical Engineering
Signature of Student		
Date	÷	12 FEBRUARY 2025.

TABLE OF CONTENTS

	Page
Author's Declaration	
ABSTRACT	5
CHAPTER 1 BACKGROUND OF ST	TUDY
1.1 Introduction	6-7
1.2 Literature Review	
1.2.1 Activated Carbon	7
1.2.2 Catalyst	8
1.2.3 Influence of K:AC Mas	s Ratios on Catalyst 8
Properties 1.2.4 Thermal Stability in Cataly	vst 8
1.2.5 Correlation Between Therr Functional Groups	nal Decomposition and 9
1.3 Problem	
Statement	
1.4 Objective	
1.5 Scope of Study	
CHAPTER 2 METHODOLOGY	
2.1 Introduction	11
2.2 Material	11
2.3 Method/Synthesis	12-14
CHAPTER 3 RESULT AND DISCUS	SION
3.1 Introduction	15
3.2 Data Analysis	
3.2.1 Thermal Gravimetric Ana	alysis 16-21
CHAPTER 4 CONCLUSI	ON AND
RECOMMENDATION	
4.1 Conclusion	22

4.2 Recommendation

REFERENCES

23 24-26

ABSTRACT

The thermal stability in potassium (KOH) and sodium (NaOH) catalysts supported over activated carbon (AC) with K:AC and Na:AC mass ratios (1:1 and 1:3) is discussed in this work. Palm kernel shell (PKS) was used as a raw material for producing an activated carbon through carbonization and chemical activation.

Preparation of catalysts included wet impregnation, then 500°C calcination. Thermal stability analysis included analysis through thermogravimetric analysis (TGA).

The thermal stability and loss in mass in K:AC and Na:AC mass ratios (1:1 and 1:3) depend a lot on respective ratios, according to the results. Greater thermal stability and reduced loss in mass in K:AC 1:3 and Na:AC 1:3 catalysts in comparison with 1:1 ratio have been determined. It can therefore conclude that a larger proportion of AC in catalysts will make them more resistant at high temperatures, and hence, best for high temperature use.

The conclusion reached in this work is that catalyst performance in producing a biodiesel can be maximized through an optimized K:AC and Na:AC proportion. There is a recommendation for future work in optimizing the activation and studying alternative agricultural residues for catalyst development in a sustainable manner.