

TITLE:

THE CORRELATION OF THERMAL DECOMPOSITION BEHAVIOUR WITH THE FUNCTIONAL GROUP COMPOSITION OF SODIUM SUPPORTED BY ACTIVATED CARBON (NA/AC) CATALYST

SUPERVISOR:

TS. NORKAMRUZITA BINTI SAADON

SCHOOL OF CHEMICAL ENGINEERING COLLEGE OF ENGINEERING

2024

AUTHOR'S DECLARATION

'I hereby declare that this report is the rest of my own work except for quotations and summaries which have been duly acknowledged."						
Name of Student	:	Ana Salsabila Hajira Binti Ahairul Anuar				
Student I.D. No.	:	2022853402				
Programme	:	Diploma in Chemical Engineering				
College/School	:	College of Engineering/School of Chemical Engineering				
Signature of Student	:					
Date	:	24 November 2024				

ABSTRACT

Sodium-supported activated carbon (Na/AC) catalysts, which are made from activated carbon obtained from palm kernel shells, are essential for a number of catalytic applications because of their surface functional groups and temperature stability. The study examines the relationship between the composition of functional groups and the behavior of thermal decomposition in Na/AC catalysts with varying Na:AC mass ratios (1:3 and 1:4). The methods of carbonization, sodium impregnation, and calcination were used to create the catalysts. Weight loss patterns at various temperatures have been observed using Thermogravimetric Analysis (TGA) to assess thermal stability, and functional groups including hydroxyl (-OH), carbonyl (-C=O), and carboxyl (-COOH) were identified using Fourier Transform Infrared Spectroscopy (FTIR). This study provides insight on how sodium loading affects catalyst performance and stability, which is crucial for maximizing biomass-derived catalysts for use in chemical synthesis, gas purification, and biodiesel production.

TABLE OF CONTENTS

			Page		
AUT	HOR'S	DECLARATION	2		
ABS'	TRACT		3		
TAB	BLE OF CONTENTS				
CHA	PTER (ONE BACKGROUND	5		
1.1	Introd	uction	6		
1.2	Litera	Literature Review			
	1.2.1	Activated Carbon	7		
	1.2.2	Catalyst	8		
	1.2.3	Sodium-Supported Activated Carbon Catalysts	9		
	1.2.4	Thermal Stability and Decomposition in Catalysts	9		
	1.2.5	Functional Groups in Sodium-Supported Catalysts	9		
	1.2.6	Impact Mass Ratios on Catalyst Properties	10		
	1.2.7	Correlation Between Functional Croup and Thermal			
		Decomposition	10		
	1.2.8	Analytical Techniques for Na/AC Catalyst Characterization	11		
	1.2.9	Research Gaps and Justification for Study	11		
1.3	Proble	em Statement	11		
1.4	Objectives				
1.5	Scope of Study				
СНА	PTER	ΓWO METHODOLOGY			
2.1	Introduction				
2.2	Materials				
2.3	Method/synthesis				

CHA	PIER	THREE RESULT AND DISCUSSION			
3.1	Introduction				
3.2	Data Analysis				
	3.2.1	Thermogravimetric analysis (TGA)	18		
	3.2.2	Fourier Transform Infrared (FTIR)	21		
СНА	PTER I	FOUR CONCLUSION AND RECOMMENDATION			
СНА 4.1	Conclu		26		
			20		
4.2	Recon	nmendation			
REF	ERENC	ES	27		