CHARACTERIZATION OF MULTILEVEL INTERCONNECT CAPACITANCE FOR 0.35µm CMOS TECHNOLOGY

Thesis submitted to the Faculty of Electrical Engineering, Universiti Teknologi MARA in fulfilment of the requirement for the Degree of Bachelor of Engineering

FAIZUL BIN OTHMAN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN

MAY 2007

ACKNOWLEDGEMENT

All praise to Allah who has given me the strength and ability to complete this thesis.

I am grateful to Mr Abdul Hadi bin Abdul Razak for the supervision and guidance throughout the research. I am also thankful to Mr Rofei Mat Husin of MIMOS Berhad for providing insight to research approach and support given throughout the research. I am indebted to MIMOS Berhad for allowing academic research to be implemented in highly sensitive, expensive and confidential environment.

On a personal note, I would like to thank my parents for their encouragement and continuous support for me during my studies in Universiti Teknologi MARA.

Last but not least, thank you to my friends who have helped me to complete the research in various ways.

ABSTRACT

This thesis presents a methodology for an interconnect capacitance characterization for 0.35μ m CMOS technology with three-level metals. The purpose of this work is to generate a capacitance table for the new MIMOS 0.35μ m CMOS process and compare with the previous back end process. The generated table is based on simulation results from Raphael field solver simulation tools. Parasitic capacitance database is created and capacitance rules file are generated for parasitic extraction using layout parameter extraction (LPE) tools, Calibre xRC. The methodology starts with plate capacitor measurement, followed by field solver simulation, and finally data verification. This methodology proves sufficiently accurate enough in technology library characterization for MIMOS 0.35μ m CMOS process. The comparison of the process shows that the interconnect capacitance from the new process increased due to the smaller design rules implemented.

TABLE OF CONTENT

CONTENTS

ACKNOWLEI	GEMEN	VT	i
ABSTRACT			ii
TABLE OF CONTENT			iii
LIST OF FIGU	IRES		v .
LIST OF TAB	LES		vi
LIST OF ABB	REVIAT	IONS	vii
CHAPTER 1	INTRO	DUCTION	
1.1	Evolutio	volution of Interconnect for CMOS Technology	
1.2	Researc	Research Objectives	
1.3	Structur	re of Thesis	3
CHAPTER 2	LITER	ATURE REVIEW	
2.1	Back-End Processing		6
2.2	The Need for Multilevel Interconnect Technology		8
	2.2.1	Functional Density	8
	2.2.2	Propagation Delay	8
	2.2.3	Wafer-Scale Integration	9
	2.2.4	Cost	10
2.3	Capacitors and Dielectrics		10
	2.3.1	The Capacitance of a Capacitor	10
	2.3.2	The Dielectric Constant	11
	2.3.3	The Capacitance of Parallel Plate Capacitor	12
2.4	Capacitance Model		13
	2.4.1	Area Capacitance	15
	2.4.2	Coupling Capacitance	16
	2.4.3	Fringe Capacitance	17
CHAPTER 3	CHARACTERIZATION METHODOLOGY		
3.1	Project Flow		20
3.2	Capacitor		21
	3.2.1	Plate Capacitor Test Structures	21
	3.2.2	Electrical Measurement	22
	3.2.3	Dielectric Thickness Measurement	22

CHAPTER 1

INTRODUCTION

In order to construct a Very Large Scale Integration (VLSI) circuits, it is necessary to fabricate many active devices on a single wafer. Initially, each of the devices must be isolated from the others, but later in the fabrication process specific devices must be interconnected in order to realize the desired circuit function [1]. Nowadays, in the VLSI circuits, the density of the circuit steadily increases as the transistor gate length downscaled with each new generation. Therefore, it will condense the circuit with millions of logic gates and several kilometers of wire. Interconnect is a process of wiring the devices on the wafer during the back-end process, as it becomes multilevel and more complex, it will greatly affect the performance of the circuits. Under this circumstances, accurate characterization and simulation of the multilevel interconnect are crucial to predict the performance of the circuit. For this research effort, the research work is implemented in Malaysian Institute of Microelectronic System (MIMOS) Berhad.

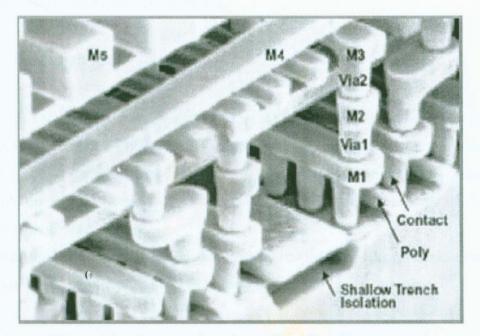


Figure 1.1: Cross section views of multilevel interconnect.