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Abstract— This project is to design and analyze the DNA 

sequence alignment module using Smith-Waterman scoring 

patterns. The main objective is to create SW pattern in matrix 

using Excel based equation. The second objective is to construct 

the module for SW sequence alignment using the matrix pattern. 

One of the major problems rose from DNA sequence alignment is 

the speed and accuracy. The computational demand needed to 

explore for analyze the data faster and accurate in these 

databases is quickly becoming a great concern. This system will 

be using Verilog language and optimize it using pattern 

recognition in order to overcome the accuracy issues. The system 

optimizes the aligning DNA fragment using Smith-Waterman 

algorithm with a pattern recognition algorithm. FPGA design, 

synthesis and simulation are done using the Xilinx ISE software 

and obtain the RTL schematic as well as the waveform of the 

module. Synopsys tools are used for analysis the project in ASIC 

design. VCS for verification the design for further process in 

ASIC design tools are used. Design Compiler is for resynthesize 

and remodelling the design with setup constraints. Static timing 

analysis using Prime Time is for advance timing analysis. Based 

on the result obtained, the minimum frequency that is suitable 

for this project is 50 MHz. The average power consumption for 

normal compile high compile and ultra-compile are 53 uW, 52.8 

uW and 49.8 uW.  The average Cell area for normal compile high 

compile and ultra-compile are 18700 um2, 18280 um2 and 9532 

um2. 

I. INTRODUCTION 

Nowadays, demands for sensitive and high performance 

DNA sequence alignment is increase from year to year and it is 

supported by and proven where the size of genomic database is 

double in every 16 months [1]. From time to times, DNA 

sequence alignment experience complexity due to 

exponentially increase of DNA sequence data. Besides, in 

pharmaceutical world may have been corrupted or failure due 

to high chemical contained in a pharmaceutical product. This is 

why the DNA sequence alignment tools for applications are 

important, in order to protect the consumer from being cheated 

and prove evidence of the unethical pharmaceutical company.   

DNA is the hereditary material in humans and not only that 

but almost all other organisms. Nearly every cell in a person‟s 

and any other organism body have the same DNA. DNA 

mostly located in the cell nucleus (where it is called nuclear 

DNA and some small amount can be found in mitochondria). 

The information in DNA is stored and can be represented by 

four chemical bases: adenine (A), guanine (G), cytosine (C), 

and thymine (T) [2]. Human DNA consists of about 3 billion 

bases, and more than 99 per cent of those bases are the same 

in all people‟s DNA. The order, or sequence, of these DNA 

bases determines the information available for building and 

maintaining an organism, which are similar to the way in 

which letters of the alphabet appear in a certain order to form 

words and sentences. 

There are several types of DNA sequence alignments that 

have been implemented and develop throughout the years. 

Needleman-Wunsh [3] and Smith-Waterman [4] both are the 

famous global and local alignment algorithm. They are also is a 

dynamic operating based but suffer in terms of time and space 

complexity especially running on the microprocessor platform. 

There‟s also pair-wise alignment such as dot-plot method, 

dynamic programming (N-W and S-W) and word method 

(FASTA and BLAST). Smith-Waterman is more reliable in 

terms of accuracy than Needleman-Wunsh in a dynamic 

programing. In this paper, the SW algorithms were used. 

Smith–Waterman also is a local search and there are also other 

local search such as FASTA (Fast Alignment Search Tools-All) 

and BLAST (Basic Local Alignment Search Tool). This 

module is design using verilog language based. The design is 

analysed and simulated first before continuing into ASIC 

design flow. Previously, tools such as FASTA [5] and BLAST 

[6] are used for DNA sequence alignment. Recently, FPGA is 

also used for DNA sequence alignment [7]. 

II. SMITH-WATERMAN ALGORITHM 

Needleman and Wunsch [8] and Sellers [9] were the first 

introducer for using technique of global alignment based on 

dynamic programming. Smith and Waterman continued it with 

the algorithm to identify the common molecular subsequence 

but the technique is on local alignment [10]. After that, some 

modifications by considering fine gap penalties and still be 

used until today for calculate the score alignment when 

involve with Smith-Waterman algorithm were introduced by 

Gotoh [11]. This algorithm were modified further in order to 

reduce the space required by introducing the quadratic time 

and linear space algorithm for optimization of Gotoh‟s 

modification by Myres and Miller [12]. 
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 The Smith-Waterman algorithm is used to compute the 

optimal local alignment of two sequences. The procedure 

consists of three steps: 

 

1) Fill in the dynamic programming matrix. 

2) Find the maximal value (score) and trace back the patch 

that leads to maximal score to find the optimal local 

alignment. 

3) Detect the Max Score 

 

The basis of a Smith-Waterman search is comparison of the 

two DNA sequences. It used individual pair-wise comparison 

between characters such equation (1): 

 

H (i, 0) = 0, 0 ≤ i ≤ m    

H (0, j) = 0, 0 ≤ j ≤ n         (2) 

If ai = bj then w (ai, bj) = w (match) or         (3) 

If ai ≠ bj then w (ai, bj) = w (mismatch)        (4) 

     {     } 

III. METHODOLOGY 

A. Macro Programming 

 

The equation (5) is created by understand how SW 

scoring works and implement it on excel to gain a pattern for 4 

based pair of DNA sequence. 

 

C7=MAX (0, B6+IF (C5=A7, $B$1, $B$2), C6+$B$3, B7+$B$3)    (5) 

 

      = B$1   (6) 

      = B$2   (7) 

      = B$3   (8) 

 

                    A B C D E F 

5 
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0 0 0 0 0 

7 A 0 2 2 2 1 

8 A 0 2 4 4 3 

9 A 0 2 4 6 5 

10 A 0 2 4 6 5 
 

Figure 1. Complete matrix table with a reference value 

 Firstly, the SW scoring parameter is setup as shows 

in equation (6), (7) and (8).  The value „0‟ in the equation (5) 

indicates that there are no negative value will be generated 

after scoring been calculated. The equation will evaluate first 

whether the character is match or mismatch for the S and T. If 

equal, it will add to the matrix and at the same time it will 

compare with the horizontal matrix and vertical matrix which 

one is the largest so it will add according to the largest value. 

 

 If the result is less or is in negative value, it will give 

a result as „0‟. The matrix filling will finish once the 4
th

 

character of S and T were compared. After the first block of 

matrix is completed, it will automatically generate the entire 

possible pattern for 4 based pair DNA sequence. 
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Figure 2. Flow of matrix filling using SW scoring pattern 

 

An example of complete alignment of 4 based pair of 

two DNA Sequences using Smith-Waterman algorithm in 

Excel as shown in figure 3. 

 

 

 

 

 

 

 

 

 

 
Figure 3. Example of a complete matrix table. 

 

B. Proposed Method 

For a 4 based pair DNA sequence, there are 66,536 

matrix patterns from “AAAA” until “TTTT”. From the 

total blocks of matrix, the same pattern will be detected 

and combined it together. However, in this paper only 4 

modules were developed as proof of concept that the 

pattern recognition can be implemented on the FPGA and 

ASIC tools. 

H (i.j) = max   

Match score: 2 

Mismatch score: -1 

Gap penalty: -1 

 

 

                    (1) 



C. Block Diagram 

 

Figure 4. Block diagram for SW scoring patterns 

 

The system consists of three blocks. The inputs for 

the system came from assembly sequence. The sequence will 

be in shot gun assembly, so every chunk of sequence will be 

fill in a matrix table to calculate its gap and penalty. 

 
Table I show the representation of bit for each letter. The 

DNA character is assigned with three bit data representation 
where A is represented by “001” while C,G and T as 
“010”,”011” and”100”. There is also bit “000” that carry out 
don‟t care value. 

TABLE 1.  BINARY REPRESENTATION OF DNA LETTER. 

 
 

Name 
DNA Letter 

Binary 

Representation 

 

adenine 
A 0012 

 

cytosine 
C 0102 

 
guanine 

G 0112 

 

thymine 
T 1002 

 
Don‟t care 

DC 0002 

 

Once the input is inserted, it will be selected 

according to its character. It will only read the vertical 

characters. Then, it will delegate the input to the exact module 

to be recognised. 

 

After the input passed the selector, it will now then 

go to pattern recognition module where all the data and 

scoring will be generated accordingly with the input given. In 

this module, it will give an output for back tracing and 

maximum score for 4 based pair DNA sequence.                                                                                                                                                   

Next module is the output selector where it will 

choose the sequence pattern that had been recognised. The 

output of this selector is a MaxScore, Horizontal and Vertical 

BackTrace where the value is already in storage data. This 

block diagram was design as minimal block so it will execute 

faster. 

D. Project Work Flow 

The flow chart in Figure 5 and Figure 6 shows the step in 
designing the DNA module as in figure 2 from FPGA Design 
Flow to ASIC Design Flow. For Verilog, Xilinx software is 
used while for ASIC design, a Synopsis tool is used. 

1. FPGA Design Flow: 

 

Figure 5 FPGA Design Flow 

 

Figure 5 shows the design flow in FPGA design flow. After 
some paper about DNA and sequencing method had been 
reviewed, start constructs the module by using Verilog 
language in ISE software. Synthesize and test benching to get 
the result in terms of speed so after that it can be optimize 
using ASIC. Recheck the Verilog for any syntax errors.  

After synthesized and test benching have been made, macro 
programming data will be compared. This is to check whether 
the pattern recognition algorithm results are similar with the 
macro programing. If not, then modify the Verilog and try to 
get the minimal line of coding to get minimal path when doing 
the RTL schematic. In this case, the nested if is used instead of 
for loop so the circuit will have minimum flip-flops. 



2. ASIC Design Flow:  

 
 

Figure 6 ASIC design flows 

 
Once satisfied with the Verilog file, implement it into 

Verilog Compiled Simulator (VCS), Design Compiler is done 
next. This process is to check the functionality of the design. If 
there error occurs, the Verilog file needs to be check for any 
error. The DC is repeated until the simulation is as expected.  

  The parameter of constraints such as timing period, 
transition time, and delay are varied so the slack and the speed 
will meet the requirement value. If the slack value gets 
negative value, timing period, transition time, and delay will be 
varied. 

Lastly, the PT is conducted to optimize the timing of design. 
The PT process is quite similar to DC process. The only 
difference is PT will perform more advance timing analysis. It 
gives better picture of the design timing

IV. RESULT AND DISCUSSION 

A. RTL schematic in ISE 

The DNA Sequence Module is designed with Verilog 
language using the Xilinx ISE tool. Compared to Xilinx ISE, 
Vivado has better synthesis engine but due to the synthesized 
time did not take a very long time so ISE is used. Before 
writing all the coding, all the internal modules need to be 
specified first. Each of modules is designed based on Figure 4. 
The DNA Sequence Module RTL schematic generated from 
ISE tools can be referred to Figure 7. 

 

Figure 7 RTL Schematic of DNA Sequence Module. 

At first, the idea was designing only one block and 
overcome the generated sequence module and implements the 
pattern recognition module. In this figure, the pattern 
recognition module has to be divided into several modules 
because the line of coding in every each of modules is too 
many. Several modules have been design and it may make the 
DNA sequence module less speed but in term of pattern 
recognition wise still functioning accordingly. 

Another benefit of creating several modules is it‟s easier to 
debug and much less time to synthesized every one of the 
module. 

B. Simulation Using ISE 

 
Waveform in Figure 8 is obtained using the ISE 

simulator.In this simulation, the reset is asserted to 1 after 
150ns. After 200ns, the reset is set to 0.  Noticed that after the  

 

 

 

 

 

 

reset change to 0, the output for this sequence started to 
produce. This module was set that, the reset is active high so 
when the reset is in high state the DNA sequence module will 
be in off mode. The output will be generated after 9 clock 
cycles. The clock is set in 10 ns every cycle. 

  

 

 

FIGURE 8 TEST BENCH USING ISE 

 



TABLE 2.  SIMULATION RESULT FOR DNA SEQUENCE. 

 
Horizontal Vertical Horizontalout verticalout MaxScore 

TTTT TTTT 000000000000 000000000000 8 

AAAG AAAA 000000000100 000000000100 6 

AAAA AAAA 000000000000 000000000000 8 

 

In Table 2, output for “TTTT” and “AAAA” is completely 
the same. It is because they have the similar input between 
horizontal and vertical. For the “AAAG”, the value is different 
due to some mismatch at the input. 

C. Verilog Compiler Simulator (VCS) 

In ASIC design flow, the module need to be first re-

verified using the VCS. This tool will simulate the Verilog 

module and produce waveform. Test benching is done during 

this process. The output waveform is observed to determine 

whether the module functions correctly or not. VCS is more  

 

 
 

powerful engine because the time needed to compile and 

synthesized the DNA module is 75% faster than ISE. The 

design code is successfully can be read by the VCS and it 

conclude that the codes have no problems in syntax or by 

running it. 

 

The waveform data obtained is similar to the 

waveform generated from ISE simulation. The output data is 

referred to Table 2. 

D. Design Compiler (DC) 

This step involves synthesize, with additional constraints 

applied to the Verilog module. The constraints applied to the 

design are mostly timing constraints. Once constraints are 

applied to the design, the module is compiled. Various type of  

compiling are used to observe the difference in speed 

processing of the DNA sequence Module. The result is 

tabulated in Table 3 until Table 15. Figure 14 until Figure 17 

in appendix shows the schematic circuit of the DNA Sequence 

after normal-compile and ultra-compile. 

 

DNA sequence Module compile using 6 different timing 

period which is 30ns, 40ns, 50ns, 60ns, 70ns, and 80ns. Result 

for high-compile, ultra-compile and normal compile is taken 

in term of power consumption, QOR, area and timing for 

setup and hold. 

 

TABLE 3.  „NORMAL COMPILE‟ IN DC 

TP  Dynamic 

Power  

Leakage 

Power  

Cell Area  

30ns  74.1602 uW 70.8040 uW 20017.337880 

40ns  60.5241 uW 65.4434 uW 18669.607866 

50ns  52.3816 uW 63.8371 uW 18516.746856 

60ns  47.0020 uW 63.7054 uW 18371.447854 

70ns  43.1254 uW 62.4209 uW 18256.124850 

80ns 40.2480 uW  62.9583 uW  18376.175849 

 

From Table 3, dynamic power for „normal compile‟ at Tp= 

80ns is around 40uW and it continue increasing as the time 

period decrease until at Tp=30ns where it around 74uW.  

Leakage power values from Tp= 80ns until Tp= 30ns are 

decreasing but not much different. For cell area, at Tp= 80ns 

are around 18376um
2
 and it decreasing until 18256um

2
 at Tp= 

70ns. The area start to increase back at Tp= 60ns and continue 

to increase until Tp= 30ns. 

 

 
 

 

 

 

 

 

 

 

 

 

 

TABLE 4.  „HIGH COMPILE‟ IN DC 

TP  Dynamic 

Power  

Leakage 

Power  

Cell Area  

30ns  74.1593 uW 66.9142 uW 18749.342848 

40ns  60.5858 uW 65.2254 uW 18437.708838 

50ns  52.4695 uW   63.9739 uW 18223.636831 

60ns  47.0233 uW   63.4322 uW 18117.070824 

70ns  43.1430 uW   62.2214 uW 18033.917825 

80ns 40.2662 uW   62.7120 uW  18131.720822 

 

From Table 4, dynamic power for „high compile‟ at Tp= 80ns 

is around 40uW and it continue increasing as the time period 

decrease until at Tp=30ns where it around 74uW.  Leakage 

power values from Tp= 80ns until Tp= 30ns are decreasing but 

not much different. For cell area, at Tp= 80ns are around 

18131um
2
 and it decreasing until 18033um

2
 at Tp= 70ns. The 

area start to increase back at Tp= 60ns and continue to increase 

until Tp= 30ns. 

 

 

 

 

 

 

 

 
 

Figure 9 Waveform generated using the VCS. 

 



TABLE 5.  „ULTRA COMPILE‟ IN DC 

TP  Dynamic 

Power  

Leakage 

Power  

Cell Area  

30ns  70.3711 uW 29.7866 uW 9586.581938 

40ns  57.6832 uW 29.8094 uW 9578.481945 

50ns  49.7305 uW 28.9091 uW 9532.343932 

60ns  44.7164 uW 28.5201 uW 9433.450936 

70ns  41.0704 uW 27.8698 uW 9328.162931 

80ns 38.4407 uW 28.2933 uW  9332.535928 

 

From Table 5, dynamic power for „ultra-compile‟ at Tp= 80ns 

is around 38uW and it continue increasing as the time period 

decrease until at Tp=30ns where it around 70uW. Leakage 

power values from Tp= 80ns until Tp= 30ns are decreasing but 

not much different. For cell area, at Tp= 80ns are around 

9332um
2
 and it continue to increase until Tp= 30ns. 

 

 
 

Figure 10. Graph of dynamic power versus timing period 

 

Figure 10 shows a graph of dynamic power on different 

types of compile with variable time. Power consumption in 

Ultra compile is much less compare with normal and high 

compile, whereas the normal and high compile dynamic power 

are close and have very small different value comparison. 

 

 
 

Figure 11. Graph of leakage power versus timing period 

 

Figure 11 shows a graph of leakage power on 

different types of compile with variable time. Power leakage 

in Ultra compile is much less compare with normal and high 

compile, whereas the normal and high compile leakage power 

are close and have very small different value comparison .thus 

tis will conclude that the best compile in terms of power is 

Ultra compile. 

 

 
Figure 12. Graph of Cell Area versus timing period 

 

Figure 12 shows a graph of cell area on different 

types of compile with variable time. Cell area in Ultra compile 

is much less compare with normal and high compile, whereas 

the normal and high compile cell area are close and have very 

small different value comparison .thus tis will conclude that 

the best compile in terms of area is Ultra compile. 

TABLE 6.  TIMING  FOR‟ NORMAL COMPILE‟ IN DC 

TP T max(T setup)  T min (T hold) 

20ns -1.92 10.25 

30ns 0.00 13.27 

40ns 0.00 17.30 

50ns 0.02 21.10 

60ns 0.06 24.93 

70ns 0.10 28.75 

80ns 0.06 32.49 

TABLE 7.  TIMING  FOR „HIGH COMPILE‟ IN DC 

TP T max(T setup)  T min (T hold) 

20ns -1.88 10.10 

30ns 0.00 13.47 

40ns 0.04 17.30 

50ns 0.00 21.10 

60ns 0.39 24.93 

70ns 0.76 28.75 

80ns 0.06 32.49 

TABLE 8.  TIMING  FOR „ULTRA COMPILE‟ IN DC 

TP T max(T setup)  T min (T hold) 

10ns -1.71 5.03 

20ns 0.00 9.24 

30ns 0.02 13.27 

40ns 0.00 17.09 

50ns 0.18 21.86 

60ns 1.76 26.07 

70ns 0.02 30.28 

80ns 0.66 33.06 

 

From Table 6 until Table 8, the minimum value for T max 

is at    Tp = 20ns using ultra-compile. It can be conclude that 

this module can be operated at 50MHz. 
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E. Static Timing Analysis (STA) Using Prime Time (PT) 

 In this process, more advance timing analysis is 

performed on the module. The result will determine whether 

the circuit can be proceed to ICC phase. If the STA fails in 

this step, the module need to re verify until the STA is 

succeed. Slack improves when doing STA. This due to STA 

process involves more advance timing compiling.  

TABLE 9.STA RESULT FOR „NORMAL COMPILE‟ 

TP T MAX (T SETUP) T MIN (T HOLD) 

20ns -0.2356 1.44 

30ns 1.0895 1.56 

40ns 3.0895 2.04 

50ns 5.0895 3.00 

60ns 7.0895 3.39 

70ns 9.0895 4.76 

80ns 11.0896 5.96 

TABLE 10.STA RESULT FOR „HIGH COMPILE‟ 

TP T MAX (T SETUP) T MIN (T HOLD) 

20ns -0.0251 0.532 

30ns 3.6453 1.86 

40ns 5.7563 2.74 

50ns 7.0912 3.89 

60ns 8.8711 3.98 

70ns 10.8763 4.76 

80ns 11.2361 6.96 

TABLE 11.STA RESULT FOR „ULTRA COMPILE‟ 

TP T MAX (T SETUP) T MIN (T HOLD) 

10ns -1.0025 0.25 

20ns 1.2347 0.44 

30ns 4.9094 0.56 

40ns 5.0864 2.04 

50ns 8.5463 3.00 

60ns 11.0841 3.39 

70ns 13.8354 4.76 

80ns 19.9896 5.96 

 

From the result shows that STA optimized the timing from 

the design compiler. The modules still operate in 50 MHz 

which is Tp= 20ns. If it lower than 20ns such as 10ns, it will 

violate the timing period. 

 

 

 

 

 

V. CONCLUSION 

In a nutshell, the objectives for this paper are successfully 
achieved. Excel based equation have been design and tabulated 
for its pattern. The design also can be implemented and 
executed in FPGA and ASIC tools. This project can be 
operated at 50 MHz. The average power consumption for 
normal compile high compile and ultra-compile are 53uW, 
52.8uW and 49.8uW. Average Cell area for normal compile 
high compile and ultra-compile are 18700um

2
, 1828um

2
 and 

56789um
2
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APPENDIX 

 

 

 

 

 

  

Figure 15 Schematic Circuit of DNA sequence high-medium 

compile. 
Figure 16 Schematic Circuit of DNA sequence ultra-compile. 

 

 
 

Figure 17 Schematic Circuit of DNA sequence high compile. 

 
Figure 13 Synthesize schematic using ISE. Figure 14 Schematic Circuit of DNA sequence medium 

compile. 


