
Design and Analysis of DNA Sequence Alignment

Module Using Smith-Waterman Scoring Patterns.

W.A.Q.M. Salleh and A.K. Halim
Department of Electronic, Faculty of Electrical Engineering

University Teknologi MARA, 40450

Shah Alam, Selangor, Malaysia

Email : wanabdulqayyum@gmail.com

Abstract— This project is to design and analyze the DNA

sequence alignment module using Smith-Waterman scoring

patterns. The main objective is to create SW pattern in matrix

using Excel based equation. The second objective is to construct

the module for SW sequence alignment using the matrix pattern.

One of the major problems rose from DNA sequence alignment is

the speed and accuracy. The computational demand needed to

explore for analyze the data faster and accurate in these

databases is quickly becoming a great concern. This system will

be using Verilog language and optimize it using pattern

recognition in order to overcome the accuracy issues. The system

optimizes the aligning DNA fragment using Smith-Waterman

algorithm with a pattern recognition algorithm. FPGA design,

synthesis and simulation are done using the Xilinx ISE software

and obtain the RTL schematic as well as the waveform of the

module. Synopsys tools are used for analysis the project in ASIC

design. VCS for verification the design for further process in

ASIC design tools are used. Design Compiler is for resynthesize

and remodelling the design with setup constraints. Static timing

analysis using Prime Time is for advance timing analysis. Based

on the result obtained, the minimum frequency that is suitable

for this project is 50 MHz. The average power consumption for

normal compile high compile and ultra-compile are 53 uW, 52.8

uW and 49.8 uW. The average Cell area for normal compile high

compile and ultra-compile are 18700 um2, 18280 um2 and 9532

um2.

I. INTRODUCTION

Nowadays, demands for sensitive and high performance

DNA sequence alignment is increase from year to year and it is

supported by and proven where the size of genomic database is

double in every 16 months [1]. From time to times, DNA

sequence alignment experience complexity due to

exponentially increase of DNA sequence data. Besides, in

pharmaceutical world may have been corrupted or failure due

to high chemical contained in a pharmaceutical product. This is

why the DNA sequence alignment tools for applications are

important, in order to protect the consumer from being cheated

and prove evidence of the unethical pharmaceutical company.

DNA is the hereditary material in humans and not only that

but almost all other organisms. Nearly every cell in a person‟s

and any other organism body have the same DNA. DNA

mostly located in the cell nucleus (where it is called nuclear

DNA and some small amount can be found in mitochondria).

The information in DNA is stored and can be represented by

four chemical bases: adenine (A), guanine (G), cytosine (C),

and thymine (T) [2]. Human DNA consists of about 3 billion

bases, and more than 99 per cent of those bases are the same

in all people‟s DNA. The order, or sequence, of these DNA

bases determines the information available for building and

maintaining an organism, which are similar to the way in

which letters of the alphabet appear in a certain order to form

words and sentences.

There are several types of DNA sequence alignments that

have been implemented and develop throughout the years.

Needleman-Wunsh [3] and Smith-Waterman [4] both are the

famous global and local alignment algorithm. They are also is a

dynamic operating based but suffer in terms of time and space

complexity especially running on the microprocessor platform.

There‟s also pair-wise alignment such as dot-plot method,

dynamic programming (N-W and S-W) and word method

(FASTA and BLAST). Smith-Waterman is more reliable in

terms of accuracy than Needleman-Wunsh in a dynamic

programing. In this paper, the SW algorithms were used.

Smith–Waterman also is a local search and there are also other

local search such as FASTA (Fast Alignment Search Tools-All)

and BLAST (Basic Local Alignment Search Tool). This

module is design using verilog language based. The design is

analysed and simulated first before continuing into ASIC

design flow. Previously, tools such as FASTA [5] and BLAST

[6] are used for DNA sequence alignment. Recently, FPGA is

also used for DNA sequence alignment [7].

II. SMITH-WATERMAN ALGORITHM

Needleman and Wunsch [8] and Sellers [9] were the first

introducer for using technique of global alignment based on

dynamic programming. Smith and Waterman continued it with

the algorithm to identify the common molecular subsequence

but the technique is on local alignment [10]. After that, some

modifications by considering fine gap penalties and still be

used until today for calculate the score alignment when

involve with Smith-Waterman algorithm were introduced by

Gotoh [11]. This algorithm were modified further in order to

reduce the space required by introducing the quadratic time

and linear space algorithm for optimization of Gotoh‟s

modification by Myres and Miller [12].

0

H (i-1, j-1) + w (ai, bj) Match/Mismatch

H (i-1, j) + w (ai,-) deletion

H (i, j-1) + w (-, bj) Insertion

A A A A

0 0 0 0 0

A 0 2 2 2 2

A 0 2 4 4 4

A 0 2 4 6 6

A 0 2 4 6 8

 The Smith-Waterman algorithm is used to compute the

optimal local alignment of two sequences. The procedure

consists of three steps:

1) Fill in the dynamic programming matrix.

2) Find the maximal value (score) and trace back the patch

that leads to maximal score to find the optimal local

alignment.

3) Detect the Max Score

The basis of a Smith-Waterman search is comparison of the

two DNA sequences. It used individual pair-wise comparison

between characters such equation (1):

H (i, 0) = 0, 0 ≤ i ≤ m

H (0, j) = 0, 0 ≤ j ≤ n (2)

If ai = bj then w (ai, bj) = w (match) or (3)

If ai ≠ bj then w (ai, bj) = w (mismatch) (4)

 { }

III. METHODOLOGY

A. Macro Programming

The equation (5) is created by understand how SW

scoring works and implement it on excel to gain a pattern for 4

based pair of DNA sequence.

C7=MAX (0, B6+IF (C5=A7, B1, B2), C6+B3, B7+B3) (5)

 = B$1 (6)

 = B$2 (7)

 = B$3 (8)

 A B C D E F

5

A A A T

6

0 0 0 0 0

7 A 0 2 2 2 1

8 A 0 2 4 4 3

9 A 0 2 4 6 5

10 A 0 2 4 6 5

Figure 1. Complete matrix table with a reference value

 Firstly, the SW scoring parameter is setup as shows

in equation (6), (7) and (8). The value „0‟ in the equation (5)

indicates that there are no negative value will be generated

after scoring been calculated. The equation will evaluate first

whether the character is match or mismatch for the S and T. If

equal, it will add to the matrix and at the same time it will

compare with the horizontal matrix and vertical matrix which

one is the largest so it will add according to the largest value.

 If the result is less or is in negative value, it will give

a result as „0‟. The matrix filling will finish once the 4
th

character of S and T were compared. After the first block of

matrix is completed, it will automatically generate the entire

possible pattern for 4 based pair DNA sequence.

A A A C

0 0 0 0 0

A 0 2 2 2 1

A 0

A 0

A 0

A A A C

0 0 0 0 0

A 0 2 2 2 1

A 0 2 4

A 0 2 4

A 0 2 4

A A A C

0 0 0 0 0

A 0 2 2 2 1

A 0 2 4 4 3

A 0 2 4 6 5

A 0 2 4 6 5

Figure 2. Flow of matrix filling using SW scoring pattern

An example of complete alignment of 4 based pair of

two DNA Sequences using Smith-Waterman algorithm in

Excel as shown in figure 3.

Figure 3. Example of a complete matrix table.

B. Proposed Method

For a 4 based pair DNA sequence, there are 66,536

matrix patterns from “AAAA” until “TTTT”. From the

total blocks of matrix, the same pattern will be detected

and combined it together. However, in this paper only 4

modules were developed as proof of concept that the

pattern recognition can be implemented on the FPGA and

ASIC tools.

H (i.j) = max

Match score: 2

Mismatch score: -1

Gap penalty: -1

 (1)

C. Block Diagram

Figure 4. Block diagram for SW scoring patterns

The system consists of three blocks. The inputs for

the system came from assembly sequence. The sequence will

be in shot gun assembly, so every chunk of sequence will be

fill in a matrix table to calculate its gap and penalty.

Table I show the representation of bit for each letter. The

DNA character is assigned with three bit data representation
where A is represented by “001” while C,G and T as
“010”,”011” and”100”. There is also bit “000” that carry out
don‟t care value.

TABLE 1. BINARY REPRESENTATION OF DNA LETTER.

Name
DNA Letter

Binary

Representation

adenine
A 0012

cytosine
C 0102

guanine

G 0112

thymine
T 1002

Don‟t care

DC 0002

Once the input is inserted, it will be selected

according to its character. It will only read the vertical

characters. Then, it will delegate the input to the exact module

to be recognised.

After the input passed the selector, it will now then

go to pattern recognition module where all the data and

scoring will be generated accordingly with the input given. In

this module, it will give an output for back tracing and

maximum score for 4 based pair DNA sequence.

Next module is the output selector where it will

choose the sequence pattern that had been recognised. The

output of this selector is a MaxScore, Horizontal and Vertical

BackTrace where the value is already in storage data. This

block diagram was design as minimal block so it will execute

faster.

D. Project Work Flow

The flow chart in Figure 5 and Figure 6 shows the step in
designing the DNA module as in figure 2 from FPGA Design
Flow to ASIC Design Flow. For Verilog, Xilinx software is
used while for ASIC design, a Synopsis tool is used.

1. FPGA Design Flow:

Figure 5 FPGA Design Flow

Figure 5 shows the design flow in FPGA design flow. After
some paper about DNA and sequencing method had been
reviewed, start constructs the module by using Verilog
language in ISE software. Synthesize and test benching to get
the result in terms of speed so after that it can be optimize
using ASIC. Recheck the Verilog for any syntax errors.

After synthesized and test benching have been made, macro
programming data will be compared. This is to check whether
the pattern recognition algorithm results are similar with the
macro programing. If not, then modify the Verilog and try to
get the minimal line of coding to get minimal path when doing
the RTL schematic. In this case, the nested if is used instead of
for loop so the circuit will have minimum flip-flops.

2. ASIC Design Flow:

Figure 6 ASIC design flows

Once satisfied with the Verilog file, implement it into

Verilog Compiled Simulator (VCS), Design Compiler is done
next. This process is to check the functionality of the design. If
there error occurs, the Verilog file needs to be check for any
error. The DC is repeated until the simulation is as expected.

 The parameter of constraints such as timing period,
transition time, and delay are varied so the slack and the speed
will meet the requirement value. If the slack value gets
negative value, timing period, transition time, and delay will be
varied.

Lastly, the PT is conducted to optimize the timing of design.
The PT process is quite similar to DC process. The only
difference is PT will perform more advance timing analysis. It
gives better picture of the design timing.

IV. RESULT AND DISCUSSION

A. RTL schematic in ISE

The DNA Sequence Module is designed with Verilog
language using the Xilinx ISE tool. Compared to Xilinx ISE,
Vivado has better synthesis engine but due to the synthesized
time did not take a very long time so ISE is used. Before
writing all the coding, all the internal modules need to be
specified first. Each of modules is designed based on Figure 4.
The DNA Sequence Module RTL schematic generated from
ISE tools can be referred to Figure 7.

Figure 7 RTL Schematic of DNA Sequence Module.

At first, the idea was designing only one block and
overcome the generated sequence module and implements the
pattern recognition module. In this figure, the pattern
recognition module has to be divided into several modules
because the line of coding in every each of modules is too
many. Several modules have been design and it may make the
DNA sequence module less speed but in term of pattern
recognition wise still functioning accordingly.

Another benefit of creating several modules is it‟s easier to
debug and much less time to synthesized every one of the
module.

B. Simulation Using ISE

Waveform in Figure 8 is obtained using the ISE

simulator.In this simulation, the reset is asserted to 1 after
150ns. After 200ns, the reset is set to 0. Noticed that after the

reset change to 0, the output for this sequence started to
produce. This module was set that, the reset is active high so
when the reset is in high state the DNA sequence module will
be in off mode. The output will be generated after 9 clock
cycles. The clock is set in 10 ns every cycle.

FIGURE 8 TEST BENCH USING ISE

TABLE 2. SIMULATION RESULT FOR DNA SEQUENCE.

Horizontal Vertical Horizontalout verticalout MaxScore

TTTT TTTT 000000000000 000000000000 8

AAAG AAAA 000000000100 000000000100 6

AAAA AAAA 000000000000 000000000000 8

In Table 2, output for “TTTT” and “AAAA” is completely
the same. It is because they have the similar input between
horizontal and vertical. For the “AAAG”, the value is different
due to some mismatch at the input.

C. Verilog Compiler Simulator (VCS)

In ASIC design flow, the module need to be first re-

verified using the VCS. This tool will simulate the Verilog

module and produce waveform. Test benching is done during

this process. The output waveform is observed to determine

whether the module functions correctly or not. VCS is more

powerful engine because the time needed to compile and

synthesized the DNA module is 75% faster than ISE. The

design code is successfully can be read by the VCS and it

conclude that the codes have no problems in syntax or by

running it.

The waveform data obtained is similar to the

waveform generated from ISE simulation. The output data is

referred to Table 2.

D. Design Compiler (DC)

This step involves synthesize, with additional constraints

applied to the Verilog module. The constraints applied to the

design are mostly timing constraints. Once constraints are

applied to the design, the module is compiled. Various type of

compiling are used to observe the difference in speed

processing of the DNA sequence Module. The result is

tabulated in Table 3 until Table 15. Figure 14 until Figure 17

in appendix shows the schematic circuit of the DNA Sequence

after normal-compile and ultra-compile.

DNA sequence Module compile using 6 different timing

period which is 30ns, 40ns, 50ns, 60ns, 70ns, and 80ns. Result

for high-compile, ultra-compile and normal compile is taken

in term of power consumption, QOR, area and timing for

setup and hold.

TABLE 3. „NORMAL COMPILE‟ IN DC

TP Dynamic

Power

Leakage

Power

Cell Area

30ns 74.1602 uW 70.8040 uW 20017.337880

40ns 60.5241 uW 65.4434 uW 18669.607866

50ns 52.3816 uW 63.8371 uW 18516.746856

60ns 47.0020 uW 63.7054 uW 18371.447854

70ns 43.1254 uW 62.4209 uW 18256.124850

80ns 40.2480 uW 62.9583 uW 18376.175849

From Table 3, dynamic power for „normal compile‟ at Tp=

80ns is around 40uW and it continue increasing as the time

period decrease until at Tp=30ns where it around 74uW.

Leakage power values from Tp= 80ns until Tp= 30ns are

decreasing but not much different. For cell area, at Tp= 80ns

are around 18376um
2
 and it decreasing until 18256um

2
 at Tp=

70ns. The area start to increase back at Tp= 60ns and continue

to increase until Tp= 30ns.

TABLE 4. „HIGH COMPILE‟ IN DC

TP Dynamic

Power

Leakage

Power

Cell Area

30ns 74.1593 uW 66.9142 uW 18749.342848

40ns 60.5858 uW 65.2254 uW 18437.708838

50ns 52.4695 uW 63.9739 uW 18223.636831

60ns 47.0233 uW 63.4322 uW 18117.070824

70ns 43.1430 uW 62.2214 uW 18033.917825

80ns 40.2662 uW 62.7120 uW 18131.720822

From Table 4, dynamic power for „high compile‟ at Tp= 80ns

is around 40uW and it continue increasing as the time period

decrease until at Tp=30ns where it around 74uW. Leakage

power values from Tp= 80ns until Tp= 30ns are decreasing but

not much different. For cell area, at Tp= 80ns are around

18131um
2
 and it decreasing until 18033um

2
 at Tp= 70ns. The

area start to increase back at Tp= 60ns and continue to increase

until Tp= 30ns.

Figure 9 Waveform generated using the VCS.

TABLE 5. „ULTRA COMPILE‟ IN DC

TP Dynamic

Power

Leakage

Power

Cell Area

30ns 70.3711 uW 29.7866 uW 9586.581938

40ns 57.6832 uW 29.8094 uW 9578.481945

50ns 49.7305 uW 28.9091 uW 9532.343932

60ns 44.7164 uW 28.5201 uW 9433.450936

70ns 41.0704 uW 27.8698 uW 9328.162931

80ns 38.4407 uW 28.2933 uW 9332.535928

From Table 5, dynamic power for „ultra-compile‟ at Tp= 80ns

is around 38uW and it continue increasing as the time period

decrease until at Tp=30ns where it around 70uW. Leakage

power values from Tp= 80ns until Tp= 30ns are decreasing but

not much different. For cell area, at Tp= 80ns are around

9332um
2
 and it continue to increase until Tp= 30ns.

Figure 10. Graph of dynamic power versus timing period

Figure 10 shows a graph of dynamic power on different

types of compile with variable time. Power consumption in

Ultra compile is much less compare with normal and high

compile, whereas the normal and high compile dynamic power

are close and have very small different value comparison.

Figure 11. Graph of leakage power versus timing period

Figure 11 shows a graph of leakage power on

different types of compile with variable time. Power leakage

in Ultra compile is much less compare with normal and high

compile, whereas the normal and high compile leakage power

are close and have very small different value comparison .thus

tis will conclude that the best compile in terms of power is

Ultra compile.

Figure 12. Graph of Cell Area versus timing period

Figure 12 shows a graph of cell area on different

types of compile with variable time. Cell area in Ultra compile

is much less compare with normal and high compile, whereas

the normal and high compile cell area are close and have very

small different value comparison .thus tis will conclude that

the best compile in terms of area is Ultra compile.

TABLE 6. TIMING FOR‟ NORMAL COMPILE‟ IN DC

TP T max(T setup) T min (T hold)

20ns -1.92 10.25

30ns 0.00 13.27

40ns 0.00 17.30

50ns 0.02 21.10

60ns 0.06 24.93

70ns 0.10 28.75

80ns 0.06 32.49

TABLE 7. TIMING FOR „HIGH COMPILE‟ IN DC

TP T max(T setup) T min (T hold)

20ns -1.88 10.10

30ns 0.00 13.47

40ns 0.04 17.30

50ns 0.00 21.10

60ns 0.39 24.93

70ns 0.76 28.75

80ns 0.06 32.49

TABLE 8. TIMING FOR „ULTRA COMPILE‟ IN DC

TP T max(T setup) T min (T hold)

10ns -1.71 5.03

20ns 0.00 9.24

30ns 0.02 13.27

40ns 0.00 17.09

50ns 0.18 21.86

60ns 1.76 26.07

70ns 0.02 30.28

80ns 0.66 33.06

From Table 6 until Table 8, the minimum value for T max

is at Tp = 20ns using ultra-compile. It can be conclude that

this module can be operated at 50MHz.

0

10

20

30

40

50

60

70

80

30ns 40ns 50ns 60ns 70ns 80ns

Normal

 high

Ultra

0

10

20

30

40

50

60

70

80

30ns 40ns 50ns 60ns 70ns 80ns

Normal

High

Ultra

0

5000

10000

15000

20000

25000

30ns 40ns 50ns 60ns 70ns 80ns

Normal

High

Ultra

E. Static Timing Analysis (STA) Using Prime Time (PT)

 In this process, more advance timing analysis is

performed on the module. The result will determine whether

the circuit can be proceed to ICC phase. If the STA fails in

this step, the module need to re verify until the STA is

succeed. Slack improves when doing STA. This due to STA

process involves more advance timing compiling.

TABLE 9.STA RESULT FOR „NORMAL COMPILE‟

TP T MAX (T SETUP) T MIN (T HOLD)

20ns -0.2356 1.44

30ns 1.0895 1.56

40ns 3.0895 2.04

50ns 5.0895 3.00

60ns 7.0895 3.39

70ns 9.0895 4.76

80ns 11.0896 5.96

TABLE 10.STA RESULT FOR „HIGH COMPILE‟

TP T MAX (T SETUP) T MIN (T HOLD)

20ns -0.0251 0.532

30ns 3.6453 1.86

40ns 5.7563 2.74

50ns 7.0912 3.89

60ns 8.8711 3.98

70ns 10.8763 4.76

80ns 11.2361 6.96

TABLE 11.STA RESULT FOR „ULTRA COMPILE‟

TP T MAX (T SETUP) T MIN (T HOLD)

10ns -1.0025 0.25

20ns 1.2347 0.44

30ns 4.9094 0.56

40ns 5.0864 2.04

50ns 8.5463 3.00

60ns 11.0841 3.39

70ns 13.8354 4.76

80ns 19.9896 5.96

From the result shows that STA optimized the timing from

the design compiler. The modules still operate in 50 MHz

which is Tp= 20ns. If it lower than 20ns such as 10ns, it will

violate the timing period.

V. CONCLUSION

In a nutshell, the objectives for this paper are successfully
achieved. Excel based equation have been design and tabulated
for its pattern. The design also can be implemented and
executed in FPGA and ASIC tools. This project can be
operated at 50 MHz. The average power consumption for
normal compile high compile and ultra-compile are 53uW,
52.8uW and 49.8uW. Average Cell area for normal compile
high compile and ultra-compile are 18700um

2
, 1828um

2
 and

56789um
2

ACKNOWLEDGMENT

The author would like to thank Mr. Abdul Karimi Halim
for supervising this project. With his guidance, as well as
technical feedback, this project managed to come to fruition.
Author would also like to appreciate the Faculty of Electronic
Engineering in Universiti Teknologi MARA Shah Alam for
providing suitable workplace for the author to conduct the
project and finish it successfully.

REFERENCES

[1] D.A Benson, I. Karsch-Mizrachi, D.J Lipman, J. Ostell, D.L. Wheeler,

“GenBank, Nucleic Acids Res””, Jan 1;33(Database issue):D334-8,
2005.

[2] J. M. Claverie, “Bioinformatic For Dummies”, 2nd ed., Indiana: Wiley

Publishing Inc, pp.17–721, 2007.

[3] DNAlignTT: Pairwise DNA Alignment with Sequence Specific

Transition-Tranversion Ratio, Ankit Agrawal, Xiaoqiu Huang,

Dpeartment of Computer Science, Iowa State University, Ames, IA
50011, USA

[4] Vamsi K Kundeti,Sanguthevar Rajasekaran,Hieu Dinh,Matthew

Vaughn,Vishal Thapar,”Efficient Parallel and out of core algorithm for
constructing large bi-directed de Bruijin graph”, BMC

Bioinformatic,2010

[5] D. J. Lipman and W. R. Pearson, “Rapid and Sensitive Protein
Similarity Searches”, Science, vol. 227, pp. 1435-41, 1985.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,

“Basic Local Alignment Search Tool”, J Mol Biol, vol. 215, pp. 403-
410, 1990.

[7] S. A. M. Al Junid, Z. A. Majid and A. K. Halim, “High Speed DNA

Sequencing Accelerator Using FPGA”, In Proceeding of 2008
International Conference on Electronic Design, Penang, Malaysia, pp

1,4, Dec 2008.

[8] S.B Needleman, C.D wunsh, “ A general method applicable to search
the similarities in the amino acid sequence of two sequences” J. of

Molecular Biology, 48 (3): 443-453,1970.

[9] P.H Sellers, “On the theory and computational of evolutionary
distances”, SIAM J.of Apllied Mathematics, 26 : 787-793, 1974.

[10] T.F Smith,M.S Waterman, “Identification of common molecullar

subsequences” J. of Molecular Biology, 147 (1): 195-197,1981.

[11] O. Gotoh, “ An improved algorithm for matching biological sequences,”

J. of Molecular Biology, 162 (3): 705-708,1982.

[12] E.W. Myres, W.Miller “Optimal aligments in linear space,” Copm.App.
in the Bioscineces, 4 (1): 11-17, 1988.

APPENDIX

Figure 15 Schematic Circuit of DNA sequence high-medium

compile.
Figure 16 Schematic Circuit of DNA sequence ultra-compile.

Figure 17 Schematic Circuit of DNA sequence high compile.

Figure 13 Synthesize schematic using ISE. Figure 14 Schematic Circuit of DNA sequence medium

compile.

