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Abstract—In order to produce seamless handover performance, a 

user’s trajectory acts as a catalyst in determining the exact time 

and position of making the handover from one base station to 

another base station. Due to this, this paper predicts user’s future 

trajectory from past trajectory utilizing deep learning (DL) 

algorithms which are Long-Short Term Memory (LSTM), Bi-

Directional LSTM, and Gated Recurrent Unit (GRU). Next, the 

performance of the model will be evaluated using regression 

metrics such as Mean Squared Error (MSE), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), and the 

Coefficient of Determination (R2). The simulation results 

displayed LSTM model surpasses other models (GRU, Bi-

Directional LSTM) on the basis of accuracy achieved such as 

lowest MSE (0.084), MAE (0.254), MAPE (83.6%) with the highest 

R2 score (-0.379). Our LSTM model was also compared to other 

researchers LSTM-based model for trajectory prediction and 

produce greater accuracy with ADE of 0.2359 and FDE of 0.1834. 

These conclude that LSTM model are the most suitable model for 

predicting user trajectories among DL algorithms. This work 

demonstrates the potential of the LSTM model for predicting user 

trajectories with high accuracy and improve handover 

performance through prediction. 

 
Index Terms—Deep Learning, LSTM, Bi-Directional LSTM, 

GRU, Trajectory Prediction 

 

I.   INTRODUCTION  

Utilization Unmanned Aerial Vehicle’s or drones as a Base 

Station (UAV-BS) is seen as a promising potential for 

extending the 5G signals through multiple areas. The definition 

of UAV-BS as stated in [1] is the UAV mounted with cellular 

communication framework to supply both of terrestrial users 

and aerial users with communication services. In heterogeneous 

networks, UAV-BS might be deployed with terrestrial BS to 

assist the traffic requirement which is seen as an economical 

way of supporting the demands instead of building another 

terrestrial BS [2].  
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However, the main problem with high density area created by 

the heterogeneous networks is the increasing rate of handover 

either from terrestrial BS to UAV-BS or from UAV-BS to 

another UAV-BS which might produce signaling overhead [3].  

On the basis of handover between two UAV-BS, handover 

performance was optimized by considering user trajectory 

prediction [4]. This approach can be further optimized, in 

relation to handover performance as illustrated in Fig. 1, which 

shows the correlation between artificial intelligence (AI), deep 

learning (DL), machine learning (ML), neural networks (NN), 

and generative AI on left-hand side, while the right-hand side 

displays sub-sets of ML. AI capable of assisting in deciding 

when a handover is necessary, ML capable of predicting the 

optimal base station for handover based on historical data about 

UE’s motion and network traffic, and DL capable of refining 

these predictions by incorporating real-time data such as UE 

sped, UE trajectory, optimizing handover decisions to 

guarantee seamless connectivity and good QoS is achieved. 

 

 
Fig. 1. Correlation between AI, ML, NN, DL and Generative AI 

 

According to G. Guney et. al [5],  a DL customized version 

of ML begin its usage in the year 2010s. R. K. Mishra et. al [6] 

stated that DL is in the group of methods utilized in ML and 

uses multiple layers to classify various factors relevant to the 

input data in order to extract characteristics from the raw data. 

L. Alzubaidi et. al in [7] concluded that DL algorithm is better 

than ML algorithm due to DL has the capability of eliminating 

the ML algorithm long process and capable of following a 

manner that is highly automated. As depicted in Fig. 1, DL 

technique consists of Artificial Neural Network (ANN),  

Recurrent Neural Network (RNN), Gated Recurrent Unit 

(GRU), Convolutional Neural Network (CNN), Long-Short 

Term Memory (LSTM), and Multilayer Perceptron (MLP). 

 According to [8], LSTM have been used widely for 
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analyzing trajectory due to its great predictive end-results. P. 

Stojkovic and P. Tadic in [9] utilized LSTM model to predict 

the object location coordinates which able to minimize the error 

and concluded that the model predicts the location of objects 

with a good degree of accuracy. The proposed model achieved 

a reduction in error by 76% when compared to the conventional 

Kalman filter method. J. B. Fernandez et. al in [10] utilized 

LSTM model to forecast the objects upcoming path which are 

moving in traffic. Besides, LSTM have great performance for 

time series data, they also able to prove that LSTM has great 

accuracy for trajectory prediction due to having minimum 

Average Displacement Error (ADE) for all the tested objects 

such as pedestrians (0.01m), cyclists (0.02m), and vehicles 

(0.02m). 

Z. Zainuddin et. al in [11] also stated that GRU have better 

accuracy in predicting future state. In this paper, the RNN-GRU 

model proposed showed an accuracy of 87% for the prediction. 

P. Han et. al in [12] uses GRU model to predict short-term real-

time trajectory coordinate point which showed lower Real 

Mean Squared Error (RMSE) when compared to other models 

such as ARIMA and Holt-Winters. In this paper, the Real-time 

GRU achieved a lower longitude error at 0.032 when compared 

to Normal-GRU (0.065) and Normal-LSTM (0.067). D. Guan 

et. al in [13] uses GRU with the additional GCN to forecast the 

trajectory of vehicles, and, showed higher prediction accuracy 

in contrast to alternative models like GCN, and Bi-directional 

GRU. The GCN-GRU proposed in this paper produced lower 

MAE (0.76) , RMSE (0.74), and capable of achieving 95% 

accuracy in trajectory prediction. 

S. Zhang et. al in [14] utilized Bi-Directional LSTM to 

predict the ship’s trajectory and able to produce effective 

trajectory prediction accuracy with MSE of 0.00047, greater 

than LSTM. D. Sahadevan et. al in [15] utilized Bi-directional 

LSTM model to forecast the trajectory of the aircraft using 

dataset from ADS-B, and, showed that Bi-directional LSTM 

has greater accuracy when compared to other models such as 

Back Propagation Neural Network, LSTM and CNN-LSTM. P. 

Casabianca et. al in [16] used Bi-directional LSTM to forecast 

the vehicle’s upcoming destination of a vehicle by taking 

consideration the journey’s history. Results from the simulation 

showed that Bi-directional LSTM with an attention mechanism 

provides better accuracy prediction than other models by 

obtaining 96% accuracy. 

Due to this, an analysis is required to determine which DL 

algorithms have the highest accuracy in predicting users 

trajectories. In this paper, DL algorithms which are LSTM, Bi-

Directional LSTM, and GRU will be employed to predict user 

trajectories. The rest of this paper is constructed into four 

sections. Section II outlines the research’s methodology, 

Section III displays the results and analysis, and Section IV 

concludes the article. 

II.   METHODOLOGY 

This section presents the methodologies used to carry out the 

research is explained, starting with the utilities such as 

hardware and software used to run the DL models. Next, the 

creation of dataset is explained including the splitting of 

datasets for testing and training. Process of building the DL 

model follows, detailing each of the DL models (LSTM, GRU, 

and Bi-Directional LSTM) and their structures. The 

methodology then continues with hyperparameter tuning for 

each models to determine the best hyperparameters for 

optimizing performance. Lastly, the evaluation of the DL 

models is carried out using regression metrics such as R2 , 

MAE, MAPE, and, MSE.. 

 

A. Hardware and Software 

Hardware used for running the ML algorithms was Lenovo 

ThinkPad T420 with Processor of Intel Core i7-2620M x 4 

running Ubuntu 24.02.1 LTS. The software used was Visual 

Studio Code (VSCode) to run the programming language, 

Python and its libraries such as Numpy, Matplotlib, Pandas 

Scikit-Learn, Keras, and Tensorflow. Pandas was utilized to 

read the CSV file containing past coordinates (x, y), Numpy 

was used to convert data into sequences for time-series 

forecasting, Matplotlib was used to plot the graph, Keras was 

used to build the DL models and for hyperparameter tuning, 

Scikit-Learn was utilized for coordinates normalization, for 

dividing the dataset into testing/training dataset, and to evaluate 

the DL models using regression metrics (e.g MSE, MAPE, 

MAE, R2). Tensorflow was used for importing the Keras 

libraries. Fig. 2, Fig. 3 and Fig. 4 which depicts each of the DL 

model structure was plotted using Keras Utils called 

“plot_model”. 

 

B. Dataset Creation 

The dataset containing past coordinates (x, y) was created 

using Python programming language with the Random library 

and Pandas library. Total of 100 random coordinates were 

generated and was saved as a comma-delimited file (e.g. CSV). 

The dataset was then converted to NumPy array and goes 

through data normalization using the MinMaxScaler. The data 

is then converted into sequences with the sequence length, 

SEQ_LENGTH equals to 10. After creating sequences, data 

was separated into testing (20) and training (80) dataset to 

produce  X_train shape of (72,10,2) and Y_train shape of (72, 

2) for all the DL models. The reason for using this dataset, 

specifically is to standardize the data training and for preventing 

from bias occurred during the training. The reason for splitting 

the dataset into training (80) and testing (20) is to guarantee that 

20 percentage of the data is utilized for testing, avoiding from 

any points in the testing dataset to appear in the training dataset, 

thus preventing leakage of data [17]. The reason for testing (20) 

dataset was utilized was to guarantee the model’s performance 

can be evaluated on data that it has no knowledge of, thus 

capable of avoiding from overfitting to be occur [18]. The 

X_train, which is the input training data, offers an organized 

depiction of the information, thus enabling the model to find 

correlations and patterns between the features [19], consists of 

72 samples, 10 time-steps, and each time step contains 2 

features at each time-step. The Y_train, which is the output 

data, contains the target variable that the model aims to predict 

[20], consists of 72 samples, and 2 output variables.  
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C. DL Model Building 

Three of these models were developed by utilizing the 

Keras’s Sequential class for grouping multiple stacks of layers 

and transforms it into a DL model. 

 

1) Long-Short Term Memory (LSTM) 

LSTM model as depicted in Fig. 2 was created with five (5) 

layers, with the first LSTM layer using rectified linear unit 

(ReLU) activation. Second layer consists of the first dropout 

layer with min_value of 0.1, max_value of 0.5 and step of 0.1. 

This indicates the lower bound starting from 0.1 with increment 

of 0.1 up till 0.5 for the optimization of dropout layer. Third 

layer consists of another LSTM layer made similar to the first 

one with min_value of 32, max_value of 128 and step of 16. 

This indicates that the number of LSTM units is being 

optimized through hyperparameter tuning, ranging from 32 to 

128, with increment of 16. Fourth layer consists of another 

dropout layer similar to the first layer of dropout. Fifth layer 

consists of the Dense layer with activation type linear. 

Compilation of the model is made with Adam optimizers and 

three different values of learning rate (0.001, 0.0005 and, 

0.0001). 

 

 
Fig. 2. LSTM Model 

 

2) Bi-Directional LSTM 

The Bi-Directional LSTM model shown in Fig. 3 was created 

with five(5) layers consisting the first Bi-Directional LSTM 

layer made with min_value of 32, max_value of 128, and step 

of 16. The second layer is the first dropout layer with min_value 

of 0.1, max_value of 0.5 and step of 0.1. Third layer consists of 

another Bi-Directional LSTM layer made similar to the first 

one. Fourth layer consists of another dropout layer similar to 

the first dropout layer. Fifth layer consists of Dense layer with 

activation type linear. Adam optimizers and three different 

values of learning rate (0.001, 0.0005, and 0.0001) was used for 

compiling the model. 

 

 
Fig. 3. Bi-Directional LSTM Model 

 

3) Gated Recurrent Unit (GRU) 

The GRU model in Fig. 4 was created with five (5) layers 

consisting the first GRU layer made with min_value of 32, 

max_value of 128, and step of 16. The second layer is the first 

dropout layer with min_value of 0.1, max_value of 0.5 and step 

of 0.1. Third layer consists of GRU layer made similar to the 

first one. Fourth layer consists of another dropout layer similar 

to the first dropout layer. The last layer, fifth layer is layered 

with Dense and linear activation. Similar to the two models, 

GRU model is compiled with Adam optimizers and similar 

learning rate as the two models previously. 

Three of the models were standardized to have two layers of 

each model (e.g. LSTM L1, LSTM L2, GRU L1, GRU L2, Bi-

directional LSTM L1, Bi-directional LSTM L2) and two 

dropout layer for each model (Dropout L1, Dropout L2) and one 

Dense layer for each model (Dense L1). The reason for this is 
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to standardize the experiment in order to prevent from having 

bias that might influence the experiment. The minimum 

(min_value) and maximum (max_value) value for Dropout 

layer and all the DL models (LSTM, Bi-LSTM, GRU) is also 

being standardized at the start of optimization in order to get 

even results, however, after hyperparameter optimization, the 

min_value and max_value will be different due to it has gone 

through optimization. 

 

 
Fig. 4. GRU Model 

 

Three of these models goes through hyperparameter 

optimization by tuning them using Keras Tuner with 

optimization algorithms type Random Search. All of the models 

have similar objectives which are the validation loss (val_loss), 

maximum trials (max_trials) of 5 and number of executions per 

trial was set to 1, for the purpose of standardization. Study made 

by J. Bergstra and Y. Bengio in [21] concluded that Random 

Search is better at hyperparameter tuning than Manual Search 

and Purely Grid Search with lesser computational time, and, 

highly effective in searching better models in search spaces that 

has greater dimensions. This study is supported by K. E. S. 

Pilario et. al in [22] where Random Search is concluded to be 

highly efficient and practical than other methods based on 

population such as PSO and GA due to having lower 

computational costs than the two method. Fig. 5 displays the 

Random Search used for Hyperparameter Tuning where the 

points were selected randomly across the search space and 

increases the chances of locating optimal hyperparameters at a 

fast rate due to its sampling from diversified regions.  

 

 
Fig. 5. Random Search for Hyperparameter Tuning 

 

E. Evaluation Metrics 

Primary purpose of evaluating the DL model through 

performance metrics such as MSE, MAE, MAPE, and R2 is to 

compare predictions made by the DL model that has been 

trained with the original dataset from the testing dataset [23]. 

 

1) Mean Squared Error (MSE) 

 

Mean Squared Error (MSE) can be measured using (1).  

Predicted coordinates is depicted as 𝑥𝑖
𝑝𝑟𝑒𝑑

, 𝑦𝑖
𝑝𝑟𝑒𝑑

 , actual 

coordinates is depicted as 𝑥𝑖
𝑡𝑟𝑢𝑒, 𝑦𝑖

𝑡𝑟𝑢𝑒 and the number of data 

points is depicted as n. According to [24], the value of MSE is 

between 0 to ∞, and, the greatest MSE value for a model is the 

value nearest to zero. 

 

𝑀𝑆𝐸 =
1

𝑛
∑((𝑥𝑖

𝑝𝑟𝑒𝑑
− 𝑥𝑖

𝑡𝑟𝑢𝑒)
2
+ (𝑦𝑖

𝑝𝑟𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒)
2
)

𝑛

𝑖=1

 
(1) 

 

2) Mean Absolute Error (MAE) 

 

Mean Absolute Error (MAE) can be described as the average 

of the absolute differences between values that are actual and 

values that are predicted. MAE can be calculated using (2). 

According to [25], MAE is commonly utilized when the ML 

model performance is calculated on data variables that are 

continuous. 

 

𝑀𝐴𝐸 =
1

𝑛
∑(|𝑥𝑖

𝑝𝑟𝑒𝑑
− 𝑥𝑖

𝑡𝑟𝑢𝑒|) + (|𝑦𝑖
𝑝𝑟𝑒𝑑

− 𝑦𝑖
𝑡𝑟𝑢𝑒|) 

(2) 

 

3) Mean Absolute Percentage Error (MAPE) 

 

Mean Absolute Percentage Error (MAPE) calculates the 

average differences between values that are actual and values 

that are predicted, in percentage. MAPE can be calculated using 

(3). Sungil. K and Heeyoung. K in [26] indicates that MAPE is 

among the most prominent calculations for determining the 

accuracy of the forecast. 
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MAPE=
1

𝑛
∑ ((

|𝑥𝑖
𝑝𝑟𝑒𝑑

−𝑥𝑖
𝑡𝑟𝑢𝑒|

|𝑥𝑖
𝑡𝑟𝑢𝑒|

) +
|𝑦𝑖

𝑝𝑟𝑒𝑑
−𝑦𝑖

𝑡𝑟𝑢𝑒|

|𝑦𝑖
𝑡𝑟𝑢𝑒|

)𝑛
𝑖=1 𝑥100 

(3) 

 

4) Coefficient of Determination (R2) 

 

The definition of coefficient of determination R-squared (R2) 

as stated by D. Zhang in  [27] calculates the variation’s 

proportions in the responses explained by the predictors that is 

available. R2 can be calculated using (4). RSS is the sum of 

squares residual which consists of actual coordinates (x, y) and 

predicted coordinates (xpred, ypred) and TSS is the total sum of 

squares consisting actual coordinates (x, y) and mean values of 

the actual coordinates (𝑥̄, 𝑦̄). 

 

𝑅2 =
(𝑇𝑆𝑆 − 𝑅𝑆𝑆)

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
 

(4) 

 

III.  RESULTS AND DISCUSSION 

This section presents the results and discussion of the 

research. Fig. 6, Fig. 7, and Fig. 8 displays the learning curve 

plots of Epoch vs Validation Loss (val_loss) and Training Loss 

(loss) at Epochs of 50 for each model. Table I presents the best 

hyperparameters that can be used for each models after going 

through hyperparameter tuning. 

TABLE I.   BEST HYPERPARAMETERS FOR EACH MODELS 

DL Model Best 1st 

LSTM Unit 

Best 2nd 

LSTM Unit 

Best 

Dropout 

(Layer 1) 

Best 

Dropout 

(Layer 2) 

Best 

Learning 

Rate 

LSTM 112 112 0.5 0.300000000

00000004 

0.001 

 Best 1st Bi-

LSTM Unit 

Best 2nd Bi-

LSTM Unit 

Best 

Dropout 
(Layer 1) 

Best 

Dropout 
(Layer 2) 

Best 

Learning 
Rate 

Bi-Directional 

LSTM 

64 32 0.1 0.4 0.001 

 Best 1st 
GRU Unit 

Best 2nd 
GRU Unit 

Best 
Dropout 

(Layer 1) 

Best 
Dropout 

(Layer 2) 

Best 
Learning 

Rate 

GRU 128 64 0.5 0.300000000
00000004 

0.001 

 

After building the best model for each of the model through 

hyperparameter tuning, the following step is model training 

through fit method by Keras, such as below; 

 

trainingTheModel = best_model.fit(X_train, y_train, 

epochs=50, validation_split=0.2, batch_size=32) 

 

 The fit method will then produces “history” object 

containing a combination list of Training Loss (loss) which 

calculates the error available on training dataset for every 

iteration during the training of the model, and, Validation Loss 

(val_loss) indicates that the error on a different dataset, which 

is the validation dataset which the model did not have 

knowledge during the training. A total of 50 values for loss and 

50 values for val_loss was created in the history object after 

training of the data using the fit method. 50 values for each 

losses (loss, val_loss) indicates that for 50 epochs, 50 values 

will be created, indicating 1 value for each epoch (e.g. 1 value 

= 1 epoch). 

 Fig. 6 displays the LSTM model with hyperparameter tuning 

learning curve plot. The graph shows that the learning curves is 

overfitting at the first 10 epochs and proceeds to show good 

fitting for the next epochs with smaller generalization gaps 

between training loss and validation loss. 

 

 
Fig. 6. LSTM + Hyperparameter Tuning (Epochs vs Loss) 

 

Fig. 7 displays the Bi-Directional LSTM model with 

hyperparameter tuning learning curve graphs containing 

training loss and validation loss for epochs of 50. The graph 

shows that it has higher generalization gap for the first 10 

epochs and the gap decreases at a lower rate as the epochs 

increases. Higher gap is seen between both losses for this model 

when compared to the LSTM model. 

 

 
Fig. 7. Bi-Directional LSTM + Hyperparameter Tuning 

(Epochs vs Loss) 

 

Fig. 8 presents the GRU model with hyperparameter tuning 

learning curve graph containing training loss and validation loss 

for 50 epochs. The graph shows that the highest gap between 
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both losses occurs at the first 10 epochs and the gap decreases 

as the epochs increases. The generalization gap between the two 

losses is the highest among the two other models (LSTM, Bi-

Directional LSTM). 

 

 
Fig. 8. GRU + Hyperparameter Tuning (Epochs vs Loss) 

 

Fig. 9, Fig. 10, and Fig. 11 presents the actual path (xtrue, ytrue) 

and predicted path (xpred, ypred) for each of the DL models used, 

respectively. The actual path is in blue color and the predicted 

path is in red. Fig. 9 displays the Actual Path vs Predicted Path 

for the LSTM model. The figure shows that the predicted path 

is nearer to the actual path indicating highest accuracy in 

predicting the future path. 

 

 
Fig. 9. LSTM for Actual vs Predicted Path 

 

Fig. 10 shows the Actual Path vs Predicted Path for the Bi-

Directional LSTM model. The predicted path shows good 

accuracy, however, there’s a distance and gap between the 

predicted path and the actual path showing that is has lower 

accuracy rate than the LSTM model previously. 

Fig. 11 presents the graph of Actual Path vs Predicted Path 

for the GRU model. Several predicted path have closer distance 

and minimal gap to the actual path, however, the accuracy of 

the predicted path is shown to have lower rate than the other 

two models through the scattered coordinates displayed. 

 

 
Fig. 10. Bi-Directional LSTM for Actual vs Predicted Path 

 

 
Fig. 11 GRU for Actual vs Predicted Path 

 

  Table II displays DL models evaluation using metrics which 

as Mean Squared Error (MSE), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE) and Coefficient of 

Determination/R-Squared (R2). In the terms of MSE, LSTM has 

the nearest value to zero while GRU is the farthest from zero 

value. This indicates that LSTM has better predictive accuracy 

when compared to the other two DL models, and, GRU 

performs the worst in terms of accuracy. In terms of MAE, 

LSTM also showed that it has smaller MAE value when 

compared to Bi-Directional LSTM and GRU. This shows that 

LSTM has smaller errors and has greater prediction accuracy. 

In the context of MAPE, LSTM shows smaller percentages than 

the other two models displaying greater accuracy than the other 

two models. Lastly, in the context of coefficient of 

determination/R-squared (R2), even though all the R2 has 

negative values indicating underperforming models, however, 

LSTM model displayed greater R2 values among the three of 

the models due to being closer to the value zero. 
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TABLE II. EVALUATION OF DL MODELS 

DL Model MSE MAE MAPE R2 Score 

LSTM 0.084 0.254 0.836 
≈ 

 (83.6 %) 

-0.379 

Bi-
Directiona

l LSTM 

0.116 0.3000 0.950 
≈ 

95.01 % 

-0.924 

GRU 0.122 0.305 0.968 

≈ 
96.771% 

-1.036 

 

 

For comparison with previous works, we have chosen the 

research paper in [28] that utilized IA-LSTM for predicting 

pedestrian trajectory prediction. The dataset used for the 

trajectory prediction is based on the UCY-ZARA02 from [29, 

30] for standardized purpose. The comparison with other 

researchers paper based on the the metrics utilized for 

evaluating trajectory predictions models as stated in [10, 31, 32] 

such as Average Displacement Error (ADE) [33] as depicted in 

Formula (5) which is defined as average Euclidean distance 

between the real value and predicted value over all time steps, 

and , Final Displacement Error (FDE) [34] as depicted in 

Formula (6) which is defined as the Euclidean distance between 

the final real value and final predicted value. 

 

 

(5) 

 

 

(6) 

 

Table III displays the comparison of configurations between 

our LSTM model and the IA-LSTM model in [28].  It consists 

of the dataset used, the number LSTM layer used, the dropout 

layer used, the activation, sequence length, test size, number of 

units/hidden neurons, optimizer, epochs, learning rate, batch 

size, the ADE and the FDE. 

TABLE III. COMPARISON OF CONFIGURATIONS BETWEEN OUR MODEL 

AND MODEL [28]. 

 Our LSTM Model  

(After 

Hyperparameter 

Tuning) 

[28] 

Dataset UCY-ZARA02 UCY-ZARA02 

LSTM Layer 2 1 

Dropout Layer 2 0 

Activation Tanh Relu 

Sequence Length 10 N/A 

Test Size 0.2 N/A 

Number of 

Units/Hidden 

Neurons 

LSTM (Layer 1) : 

112 

LSTM (Layer 2): 

80 

128 

Dropout (Layer 1): 

0.30000000000000

004 

Dropout (Layer 2: 

0.30000000000000

004 

Optimizer SGD Adam 

Epochs 50 150 

Batch Size 32 8 

ADE 0.2359 0.4827 

FDE 0.1834 0.7099 

Learning Rate 0.005 0.001 

 

Fig. 11 displays the graph of ADE and FDE for our model 

and the IA-LSTM model in [28]. Our LSTM model capable of 

achieving ADE of 0.2359 and FDE of 0.1834, which was which 

have differences of 73.5058% and 133.685%, respectively with 

the LSTM model in [28]. This indicates that our model has 

greater prediction accuracy when compared to other models. 

 

 
Fig 11. Average Displacement Error (ADE) and Final 

Displacement Error (FDE) for Our LSTM Model and IA-LSTM 

Model [28] 

 

 As shown in Table III, the differences between our model 

and model [28] is the optimizer, the number of epochs, the batch 

size, learning rate and the number of layers used by the models. 

The model [28] uses the Adaptive Moment Estimation (Adam) 

optimizer while our model utilizes the Stochastic Gradient 

Descent (SGD) optimizer. In this context, the types of optimizer 

might affect the value of ADE and FDE. This statement is 

supported by the researchers in [35] where they stated the the 

Adam optimizer commonly leads to degrading performance 

than SGD for training deep neural networks. Despite their 

advantages such as high speed convergence, the Adam 

optimizer was stated in [36 , 37 , 38] to have poorer 

generalization performance than SGD. The rate of the epochs 

might also played a role in the ADE and FDE values. Based on 

[39], increasing the epochs at a higher rate does not improve the 

learning and might produce overfitting. Another reasons that 

affect the ADE and FDE values is the batch size, where our 

model has a batch size of 32 while model [28] has batch size of 

8. Even though smaller batch size has the advantages of 
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minimizing the training time and less memory usage, larger 

batch size are known to produce minimum amount of prediction 

error [40], therefore, it will affect the model’s ADE and FDE. 

Another reason that plays a role in the differences between ADE 

and FDE is the sequence length used. The model [28] does not 

utilized sequence length and our model utilized sequence length 

of 10. This is supported by a research made by [41] where 

sequence length might affects the model’s prediction 

performance. Longer sequence length makes the model hard to 

remember information that is relevant and shorter sequence 

length makes the model to have insufficient context for making 

predictions accurately. Last reason why our models have 

greater ADE and FDE than model [28] is due to the usage of 

multiple LSTM layers and Dropout layers with the additional 

hyperparameter tuning. Multi-LSTM layers produces better 

prediction performance due to its capability of capturing 

temporal dependencies that are much more longer than single 

LSTM layers and produces lower losses [42]. Adding dropout 

layer to the LSTM is one of the techniques to overcome 

overfitting and enhances the model’s performances [43]. 

Optimizing the model’s through hyperparameter tuning affect 

the model’s prediction performance positively [44], and, with 

the Random Search tuner utilized with this model, it provides 

the most suitable hyperparameter’s for predicting the 

coordinates accurately. Random Search was stated to have 

greater advantages than other tree-based algorithms for 

hyperparameter tuning [45].  

 

As a summary, the reason for differences of ADE and FDE 

between our model and model [28] is due to: 

 

i. Type of Optimizer [ 36 , 37 , 38 ] 

ii. Rate of Epochs [39] 

iii. Batch Size [40] 

iv. Sequence Length [41] 

v. Multiple LSTM Layers [42] and Dropout Layers [43] 

with Hyperparameter Tuning [44 , 45] 

 

IV.  CONCLUSION 

 In this paper, three DL models for predicting trajectory were 

analyzed. Each of the three models underwent hyperparameter 

tuning to optimize the performance. Learning curve graph for 

validation loss and training loss were plotted for each models. 

Next, the actual path was plotted against the predicted path for 

each model, displaying their accuracy and accuracy of 

prediction. Lastly, the three models were evaluated using 

regression metrics such as MSE, MAE, MAPE, and R2. It can 

be concluded that the LSTM model has the greatest accuracy in 

trajectory prediction when compared to the other models. The 

LSTM model was also compared with other LSTM-based 

models and showed greater prediction accuracy by achieving 

ADE of 0.2359 and FDE of 0.1834, lower than the other LSTM-

based models. The trajectory prediction can be applied in terms 

of handover performance where in a UAV-BS network, the UE 

trajectory is predicted to target the next base station for 

initiating handover. For future work, the Early Stopping method 

could be included when training the DL model to optimize the 

LSTM model. Additionally, it would be beneficial to analyze 

the accuracy of prediction of the LSTM with different types, 

such as Convolutional LSTM or LSTM with Attention 

Mechanism. 
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