
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH https://doi.org/10.24191/jeesr.v26i1.010

79

Abstract—In order to produce seamless handover performance, a

user’s trajectory acts as a catalyst in determining the exact time

and position of making the handover from one base station to

another base station. Due to this, this paper predicts user’s future

trajectory from past trajectory utilizing deep learning (DL)

algorithms which are Long-Short Term Memory (LSTM), Bi-

Directional LSTM, and Gated Recurrent Unit (GRU). Next, the

performance of the model will be evaluated using regression

metrics such as Mean Squared Error (MSE), Mean Absolute

Error (MAE), Mean Absolute Percentage Error (MAPE), and the

Coefficient of Determination (R2). The simulation results

displayed LSTM model surpasses other models (GRU, Bi-

Directional LSTM) on the basis of accuracy achieved such as

lowest MSE (0.084), MAE (0.254), MAPE (83.6%) with the highest

R2 score (-0.379). Our LSTM model was also compared to other

researchers LSTM-based model for trajectory prediction and

produce greater accuracy with ADE of 0.2359 and FDE of 0.1834.

These conclude that LSTM model are the most suitable model for

predicting user trajectories among DL algorithms. This work

demonstrates the potential of the LSTM model for predicting user

trajectories with high accuracy and improve handover

performance through prediction.

Index Terms—Deep Learning, LSTM, Bi-Directional LSTM,

GRU, Trajectory Prediction

I. INTRODUCTION

Utilization Unmanned Aerial Vehicle’s or drones as a Base

Station (UAV-BS) is seen as a promising potential for

extending the 5G signals through multiple areas. The definition

of UAV-BS as stated in [1] is the UAV mounted with cellular

communication framework to supply both of terrestrial users

and aerial users with communication services. In heterogeneous

networks, UAV-BS might be deployed with terrestrial BS to

assist the traffic requirement which is seen as an economical

way of supporting the demands instead of building another

terrestrial BS [2].

This manuscript is submitted on February 17, 2025, revised on March 4,
2025, and accepted on March 7, 2025. Ahmad Zaki Aiman Abdul Rashid and

Azita Laily Yusof are with the School of Electrical Engineering, College of

Engineering, Universiti Teknologi MARA, Shah Alam.

*Corresponding author

Email address: azita968@uitm.edu.my

1985-5389/©️ 2025 The Authors. Published by UiTM Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

However, the main problem with high density area created by

the heterogeneous networks is the increasing rate of handover

either from terrestrial BS to UAV-BS or from UAV-BS to

another UAV-BS which might produce signaling overhead [3].

On the basis of handover between two UAV-BS, handover

performance was optimized by considering user trajectory

prediction [4]. This approach can be further optimized, in

relation to handover performance as illustrated in Fig. 1, which

shows the correlation between artificial intelligence (AI), deep

learning (DL), machine learning (ML), neural networks (NN),

and generative AI on left-hand side, while the right-hand side

displays sub-sets of ML. AI capable of assisting in deciding

when a handover is necessary, ML capable of predicting the

optimal base station for handover based on historical data about

UE’s motion and network traffic, and DL capable of refining

these predictions by incorporating real-time data such as UE

sped, UE trajectory, optimizing handover decisions to

guarantee seamless connectivity and good QoS is achieved.

Fig. 1. Correlation between AI, ML, NN, DL and Generative AI

According to G. Guney et. al [5], a DL customized version

of ML begin its usage in the year 2010s. R. K. Mishra et. al [6]

stated that DL is in the group of methods utilized in ML and

uses multiple layers to classify various factors relevant to the

input data in order to extract characteristics from the raw data.

L. Alzubaidi et. al in [7] concluded that DL algorithm is better

than ML algorithm due to DL has the capability of eliminating

the ML algorithm long process and capable of following a

manner that is highly automated. As depicted in Fig. 1, DL

technique consists of Artificial Neural Network (ANN),

Recurrent Neural Network (RNN), Gated Recurrent Unit

(GRU), Convolutional Neural Network (CNN), Long-Short

Term Memory (LSTM), and Multilayer Perceptron (MLP).

 According to [8], LSTM have been used widely for

Predicting User Trajectories using Deep

Learning Algorithms

Ahmad Zaki Aiman Abdul Rashid, Azita Laily Yusof*, and Norsuzila Ya’acob

mailto:azita968@uitm.edu.my

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

80

analyzing trajectory due to its great predictive end-results. P.

Stojkovic and P. Tadic in [9] utilized LSTM model to predict

the object location coordinates which able to minimize the error

and concluded that the model predicts the location of objects

with a good degree of accuracy. The proposed model achieved

a reduction in error by 76% when compared to the conventional

Kalman filter method. J. B. Fernandez et. al in [10] utilized

LSTM model to forecast the objects upcoming path which are

moving in traffic. Besides, LSTM have great performance for

time series data, they also able to prove that LSTM has great

accuracy for trajectory prediction due to having minimum

Average Displacement Error (ADE) for all the tested objects

such as pedestrians (0.01m), cyclists (0.02m), and vehicles

(0.02m).

Z. Zainuddin et. al in [11] also stated that GRU have better

accuracy in predicting future state. In this paper, the RNN-GRU

model proposed showed an accuracy of 87% for the prediction.

P. Han et. al in [12] uses GRU model to predict short-term real-

time trajectory coordinate point which showed lower Real

Mean Squared Error (RMSE) when compared to other models

such as ARIMA and Holt-Winters. In this paper, the Real-time

GRU achieved a lower longitude error at 0.032 when compared

to Normal-GRU (0.065) and Normal-LSTM (0.067). D. Guan

et. al in [13] uses GRU with the additional GCN to forecast the

trajectory of vehicles, and, showed higher prediction accuracy

in contrast to alternative models like GCN, and Bi-directional

GRU. The GCN-GRU proposed in this paper produced lower

MAE (0.76) , RMSE (0.74), and capable of achieving 95%

accuracy in trajectory prediction.

S. Zhang et. al in [14] utilized Bi-Directional LSTM to

predict the ship’s trajectory and able to produce effective

trajectory prediction accuracy with MSE of 0.00047, greater

than LSTM. D. Sahadevan et. al in [15] utilized Bi-directional

LSTM model to forecast the trajectory of the aircraft using

dataset from ADS-B, and, showed that Bi-directional LSTM

has greater accuracy when compared to other models such as

Back Propagation Neural Network, LSTM and CNN-LSTM. P.

Casabianca et. al in [16] used Bi-directional LSTM to forecast

the vehicle’s upcoming destination of a vehicle by taking

consideration the journey’s history. Results from the simulation

showed that Bi-directional LSTM with an attention mechanism

provides better accuracy prediction than other models by

obtaining 96% accuracy.

Due to this, an analysis is required to determine which DL

algorithms have the highest accuracy in predicting users

trajectories. In this paper, DL algorithms which are LSTM, Bi-

Directional LSTM, and GRU will be employed to predict user

trajectories. The rest of this paper is constructed into four

sections. Section II outlines the research’s methodology,

Section III displays the results and analysis, and Section IV

concludes the article.

II. METHODOLOGY

This section presents the methodologies used to carry out the

research is explained, starting with the utilities such as

hardware and software used to run the DL models. Next, the

creation of dataset is explained including the splitting of

datasets for testing and training. Process of building the DL

model follows, detailing each of the DL models (LSTM, GRU,

and Bi-Directional LSTM) and their structures. The

methodology then continues with hyperparameter tuning for

each models to determine the best hyperparameters for

optimizing performance. Lastly, the evaluation of the DL

models is carried out using regression metrics such as R2 ,

MAE, MAPE, and, MSE..

A. Hardware and Software

Hardware used for running the ML algorithms was Lenovo

ThinkPad T420 with Processor of Intel Core i7-2620M x 4

running Ubuntu 24.02.1 LTS. The software used was Visual

Studio Code (VSCode) to run the programming language,

Python and its libraries such as Numpy, Matplotlib, Pandas

Scikit-Learn, Keras, and Tensorflow. Pandas was utilized to

read the CSV file containing past coordinates (x, y), Numpy

was used to convert data into sequences for time-series

forecasting, Matplotlib was used to plot the graph, Keras was

used to build the DL models and for hyperparameter tuning,

Scikit-Learn was utilized for coordinates normalization, for

dividing the dataset into testing/training dataset, and to evaluate

the DL models using regression metrics (e.g MSE, MAPE,

MAE, R2). Tensorflow was used for importing the Keras

libraries. Fig. 2, Fig. 3 and Fig. 4 which depicts each of the DL

model structure was plotted using Keras Utils called

“plot_model”.

B. Dataset Creation

The dataset containing past coordinates (x, y) was created

using Python programming language with the Random library

and Pandas library. Total of 100 random coordinates were

generated and was saved as a comma-delimited file (e.g. CSV).

The dataset was then converted to NumPy array and goes

through data normalization using the MinMaxScaler. The data

is then converted into sequences with the sequence length,

SEQ_LENGTH equals to 10. After creating sequences, data

was separated into testing (20) and training (80) dataset to

produce X_train shape of (72,10,2) and Y_train shape of (72,

2) for all the DL models. The reason for using this dataset,

specifically is to standardize the data training and for preventing

from bias occurred during the training. The reason for splitting

the dataset into training (80) and testing (20) is to guarantee that

20 percentage of the data is utilized for testing, avoiding from

any points in the testing dataset to appear in the training dataset,

thus preventing leakage of data [17]. The reason for testing (20)

dataset was utilized was to guarantee the model’s performance

can be evaluated on data that it has no knowledge of, thus

capable of avoiding from overfitting to be occur [18]. The

X_train, which is the input training data, offers an organized

depiction of the information, thus enabling the model to find

correlations and patterns between the features [19], consists of

72 samples, 10 time-steps, and each time step contains 2

features at each time-step. The Y_train, which is the output

data, contains the target variable that the model aims to predict

[20], consists of 72 samples, and 2 output variables.

Zaki et.al.: Predicting User Trajectories using Deep Learning Algorithms

81

C. DL Model Building

Three of these models were developed by utilizing the

Keras’s Sequential class for grouping multiple stacks of layers

and transforms it into a DL model.

1) Long-Short Term Memory (LSTM)

LSTM model as depicted in Fig. 2 was created with five (5)

layers, with the first LSTM layer using rectified linear unit

(ReLU) activation. Second layer consists of the first dropout

layer with min_value of 0.1, max_value of 0.5 and step of 0.1.

This indicates the lower bound starting from 0.1 with increment

of 0.1 up till 0.5 for the optimization of dropout layer. Third

layer consists of another LSTM layer made similar to the first

one with min_value of 32, max_value of 128 and step of 16.

This indicates that the number of LSTM units is being

optimized through hyperparameter tuning, ranging from 32 to

128, with increment of 16. Fourth layer consists of another

dropout layer similar to the first layer of dropout. Fifth layer

consists of the Dense layer with activation type linear.

Compilation of the model is made with Adam optimizers and

three different values of learning rate (0.001, 0.0005 and,

0.0001).

Fig. 2. LSTM Model

2) Bi-Directional LSTM

The Bi-Directional LSTM model shown in Fig. 3 was created

with five(5) layers consisting the first Bi-Directional LSTM

layer made with min_value of 32, max_value of 128, and step

of 16. The second layer is the first dropout layer with min_value

of 0.1, max_value of 0.5 and step of 0.1. Third layer consists of

another Bi-Directional LSTM layer made similar to the first

one. Fourth layer consists of another dropout layer similar to

the first dropout layer. Fifth layer consists of Dense layer with

activation type linear. Adam optimizers and three different

values of learning rate (0.001, 0.0005, and 0.0001) was used for

compiling the model.

Fig. 3. Bi-Directional LSTM Model

3) Gated Recurrent Unit (GRU)

The GRU model in Fig. 4 was created with five (5) layers

consisting the first GRU layer made with min_value of 32,

max_value of 128, and step of 16. The second layer is the first

dropout layer with min_value of 0.1, max_value of 0.5 and step

of 0.1. Third layer consists of GRU layer made similar to the

first one. Fourth layer consists of another dropout layer similar

to the first dropout layer. The last layer, fifth layer is layered

with Dense and linear activation. Similar to the two models,

GRU model is compiled with Adam optimizers and similar

learning rate as the two models previously.

Three of the models were standardized to have two layers of

each model (e.g. LSTM L1, LSTM L2, GRU L1, GRU L2, Bi-

directional LSTM L1, Bi-directional LSTM L2) and two

dropout layer for each model (Dropout L1, Dropout L2) and one

Dense layer for each model (Dense L1). The reason for this is

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

82

to standardize the experiment in order to prevent from having

bias that might influence the experiment. The minimum

(min_value) and maximum (max_value) value for Dropout

layer and all the DL models (LSTM, Bi-LSTM, GRU) is also

being standardized at the start of optimization in order to get

even results, however, after hyperparameter optimization, the

min_value and max_value will be different due to it has gone

through optimization.

Fig. 4. GRU Model

Three of these models goes through hyperparameter

optimization by tuning them using Keras Tuner with

optimization algorithms type Random Search. All of the models

have similar objectives which are the validation loss (val_loss),

maximum trials (max_trials) of 5 and number of executions per

trial was set to 1, for the purpose of standardization. Study made

by J. Bergstra and Y. Bengio in [21] concluded that Random

Search is better at hyperparameter tuning than Manual Search

and Purely Grid Search with lesser computational time, and,

highly effective in searching better models in search spaces that

has greater dimensions. This study is supported by K. E. S.

Pilario et. al in [22] where Random Search is concluded to be

highly efficient and practical than other methods based on

population such as PSO and GA due to having lower

computational costs than the two method. Fig. 5 displays the

Random Search used for Hyperparameter Tuning where the

points were selected randomly across the search space and

increases the chances of locating optimal hyperparameters at a

fast rate due to its sampling from diversified regions.

Fig. 5. Random Search for Hyperparameter Tuning

E. Evaluation Metrics

Primary purpose of evaluating the DL model through

performance metrics such as MSE, MAE, MAPE, and R2 is to

compare predictions made by the DL model that has been

trained with the original dataset from the testing dataset [23].

1) Mean Squared Error (MSE)

Mean Squared Error (MSE) can be measured using (1).

Predicted coordinates is depicted as 𝑥𝑖
𝑝𝑟𝑒𝑑

, 𝑦𝑖
𝑝𝑟𝑒𝑑

 , actual

coordinates is depicted as 𝑥𝑖
𝑡𝑟𝑢𝑒, 𝑦𝑖

𝑡𝑟𝑢𝑒 and the number of data

points is depicted as n. According to [24], the value of MSE is

between 0 to ∞, and, the greatest MSE value for a model is the

value nearest to zero.

𝑀𝑆𝐸 =
1

𝑛
∑((𝑥𝑖

𝑝𝑟𝑒𝑑
− 𝑥𝑖

𝑡𝑟𝑢𝑒)
2
+ (𝑦𝑖

𝑝𝑟𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒)
2
)

𝑛

𝑖=1

(1)

2) Mean Absolute Error (MAE)

Mean Absolute Error (MAE) can be described as the average

of the absolute differences between values that are actual and

values that are predicted. MAE can be calculated using (2).

According to [25], MAE is commonly utilized when the ML

model performance is calculated on data variables that are

continuous.

𝑀𝐴𝐸 =
1

𝑛
∑(|𝑥𝑖

𝑝𝑟𝑒𝑑
− 𝑥𝑖

𝑡𝑟𝑢𝑒|) + (|𝑦𝑖
𝑝𝑟𝑒𝑑

− 𝑦𝑖
𝑡𝑟𝑢𝑒|)

(2)

3) Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE) calculates the

average differences between values that are actual and values

that are predicted, in percentage. MAPE can be calculated using

(3). Sungil. K and Heeyoung. K in [26] indicates that MAPE is

among the most prominent calculations for determining the

accuracy of the forecast.

Zaki et.al.: Predicting User Trajectories using Deep Learning Algorithms

83

MAPE=
1

𝑛
∑ ((

|𝑥𝑖
𝑝𝑟𝑒𝑑

−𝑥𝑖
𝑡𝑟𝑢𝑒|

|𝑥𝑖
𝑡𝑟𝑢𝑒|

) +
|𝑦𝑖

𝑝𝑟𝑒𝑑
−𝑦𝑖

𝑡𝑟𝑢𝑒|

|𝑦𝑖
𝑡𝑟𝑢𝑒|

)𝑛
𝑖=1 𝑥100

(3)

4) Coefficient of Determination (R2)

The definition of coefficient of determination R-squared (R2)

as stated by D. Zhang in [27] calculates the variation’s

proportions in the responses explained by the predictors that is

available. R2 can be calculated using (4). RSS is the sum of

squares residual which consists of actual coordinates (x, y) and

predicted coordinates (xpred, ypred) and TSS is the total sum of

squares consisting actual coordinates (x, y) and mean values of

the actual coordinates (𝑥̄, 𝑦̄).

𝑅2 =
(𝑇𝑆𝑆 − 𝑅𝑆𝑆)

𝑇𝑆𝑆
= 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆

(4)

III. RESULTS AND DISCUSSION

This section presents the results and discussion of the

research. Fig. 6, Fig. 7, and Fig. 8 displays the learning curve

plots of Epoch vs Validation Loss (val_loss) and Training Loss

(loss) at Epochs of 50 for each model. Table I presents the best

hyperparameters that can be used for each models after going

through hyperparameter tuning.

TABLE I. BEST HYPERPARAMETERS FOR EACH MODELS

DL Model Best 1st

LSTM Unit

Best 2nd

LSTM Unit

Best

Dropout

(Layer 1)

Best

Dropout

(Layer 2)

Best

Learning

Rate

LSTM 112 112 0.5 0.300000000

00000004

0.001

 Best 1st Bi-

LSTM Unit

Best 2nd Bi-

LSTM Unit

Best

Dropout
(Layer 1)

Best

Dropout
(Layer 2)

Best

Learning
Rate

Bi-Directional

LSTM

64 32 0.1 0.4 0.001

 Best 1st
GRU Unit

Best 2nd
GRU Unit

Best
Dropout

(Layer 1)

Best
Dropout

(Layer 2)

Best
Learning

Rate

GRU 128 64 0.5 0.300000000
00000004

0.001

After building the best model for each of the model through

hyperparameter tuning, the following step is model training

through fit method by Keras, such as below;

trainingTheModel = best_model.fit(X_train, y_train,

epochs=50, validation_split=0.2, batch_size=32)

 The fit method will then produces “history” object

containing a combination list of Training Loss (loss) which

calculates the error available on training dataset for every

iteration during the training of the model, and, Validation Loss

(val_loss) indicates that the error on a different dataset, which

is the validation dataset which the model did not have

knowledge during the training. A total of 50 values for loss and

50 values for val_loss was created in the history object after

training of the data using the fit method. 50 values for each

losses (loss, val_loss) indicates that for 50 epochs, 50 values

will be created, indicating 1 value for each epoch (e.g. 1 value

= 1 epoch).

 Fig. 6 displays the LSTM model with hyperparameter tuning

learning curve plot. The graph shows that the learning curves is

overfitting at the first 10 epochs and proceeds to show good

fitting for the next epochs with smaller generalization gaps

between training loss and validation loss.

Fig. 6. LSTM + Hyperparameter Tuning (Epochs vs Loss)

Fig. 7 displays the Bi-Directional LSTM model with

hyperparameter tuning learning curve graphs containing

training loss and validation loss for epochs of 50. The graph

shows that it has higher generalization gap for the first 10

epochs and the gap decreases at a lower rate as the epochs

increases. Higher gap is seen between both losses for this model

when compared to the LSTM model.

Fig. 7. Bi-Directional LSTM + Hyperparameter Tuning

(Epochs vs Loss)

Fig. 8 presents the GRU model with hyperparameter tuning

learning curve graph containing training loss and validation loss

for 50 epochs. The graph shows that the highest gap between

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

84

both losses occurs at the first 10 epochs and the gap decreases

as the epochs increases. The generalization gap between the two

losses is the highest among the two other models (LSTM, Bi-

Directional LSTM).

Fig. 8. GRU + Hyperparameter Tuning (Epochs vs Loss)

Fig. 9, Fig. 10, and Fig. 11 presents the actual path (xtrue, ytrue)

and predicted path (xpred, ypred) for each of the DL models used,

respectively. The actual path is in blue color and the predicted

path is in red. Fig. 9 displays the Actual Path vs Predicted Path

for the LSTM model. The figure shows that the predicted path

is nearer to the actual path indicating highest accuracy in

predicting the future path.

Fig. 9. LSTM for Actual vs Predicted Path

Fig. 10 shows the Actual Path vs Predicted Path for the Bi-

Directional LSTM model. The predicted path shows good

accuracy, however, there’s a distance and gap between the

predicted path and the actual path showing that is has lower

accuracy rate than the LSTM model previously.

Fig. 11 presents the graph of Actual Path vs Predicted Path

for the GRU model. Several predicted path have closer distance

and minimal gap to the actual path, however, the accuracy of

the predicted path is shown to have lower rate than the other

two models through the scattered coordinates displayed.

Fig. 10. Bi-Directional LSTM for Actual vs Predicted Path

Fig. 11 GRU for Actual vs Predicted Path

 Table II displays DL models evaluation using metrics which

as Mean Squared Error (MSE), Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE) and Coefficient of

Determination/R-Squared (R2). In the terms of MSE, LSTM has

the nearest value to zero while GRU is the farthest from zero

value. This indicates that LSTM has better predictive accuracy

when compared to the other two DL models, and, GRU

performs the worst in terms of accuracy. In terms of MAE,

LSTM also showed that it has smaller MAE value when

compared to Bi-Directional LSTM and GRU. This shows that

LSTM has smaller errors and has greater prediction accuracy.

In the context of MAPE, LSTM shows smaller percentages than

the other two models displaying greater accuracy than the other

two models. Lastly, in the context of coefficient of

determination/R-squared (R2), even though all the R2 has

negative values indicating underperforming models, however,

LSTM model displayed greater R2 values among the three of

the models due to being closer to the value zero.

Zaki et.al.: Predicting User Trajectories using Deep Learning Algorithms

85

TABLE II. EVALUATION OF DL MODELS

DL Model MSE MAE MAPE R2 Score

LSTM 0.084 0.254 0.836
≈

 (83.6 %)

-0.379

Bi-
Directiona

l LSTM

0.116 0.3000 0.950
≈

95.01 %

-0.924

GRU 0.122 0.305 0.968

≈
96.771%

-1.036

For comparison with previous works, we have chosen the

research paper in [28] that utilized IA-LSTM for predicting

pedestrian trajectory prediction. The dataset used for the

trajectory prediction is based on the UCY-ZARA02 from [29,

30] for standardized purpose. The comparison with other

researchers paper based on the the metrics utilized for

evaluating trajectory predictions models as stated in [10, 31, 32]

such as Average Displacement Error (ADE) [33] as depicted in

Formula (5) which is defined as average Euclidean distance

between the real value and predicted value over all time steps,

and , Final Displacement Error (FDE) [34] as depicted in

Formula (6) which is defined as the Euclidean distance between

the final real value and final predicted value.

(5)

(6)

Table III displays the comparison of configurations between

our LSTM model and the IA-LSTM model in [28]. It consists

of the dataset used, the number LSTM layer used, the dropout

layer used, the activation, sequence length, test size, number of

units/hidden neurons, optimizer, epochs, learning rate, batch

size, the ADE and the FDE.

TABLE III. COMPARISON OF CONFIGURATIONS BETWEEN OUR MODEL

AND MODEL [28].

 Our LSTM Model

(After

Hyperparameter

Tuning)

[28]

Dataset UCY-ZARA02 UCY-ZARA02

LSTM Layer 2 1

Dropout Layer 2 0

Activation Tanh Relu

Sequence Length 10 N/A

Test Size 0.2 N/A

Number of

Units/Hidden

Neurons

LSTM (Layer 1) :

112

LSTM (Layer 2):

80

128

Dropout (Layer 1):

0.30000000000000

004

Dropout (Layer 2:

0.30000000000000

004

Optimizer SGD Adam

Epochs 50 150

Batch Size 32 8

ADE 0.2359 0.4827

FDE 0.1834 0.7099

Learning Rate 0.005 0.001

Fig. 11 displays the graph of ADE and FDE for our model

and the IA-LSTM model in [28]. Our LSTM model capable of

achieving ADE of 0.2359 and FDE of 0.1834, which was which

have differences of 73.5058% and 133.685%, respectively with

the LSTM model in [28]. This indicates that our model has

greater prediction accuracy when compared to other models.

Fig 11. Average Displacement Error (ADE) and Final

Displacement Error (FDE) for Our LSTM Model and IA-LSTM

Model [28]

 As shown in Table III, the differences between our model

and model [28] is the optimizer, the number of epochs, the batch

size, learning rate and the number of layers used by the models.

The model [28] uses the Adaptive Moment Estimation (Adam)

optimizer while our model utilizes the Stochastic Gradient

Descent (SGD) optimizer. In this context, the types of optimizer

might affect the value of ADE and FDE. This statement is

supported by the researchers in [35] where they stated the the

Adam optimizer commonly leads to degrading performance

than SGD for training deep neural networks. Despite their

advantages such as high speed convergence, the Adam

optimizer was stated in [36 , 37 , 38] to have poorer

generalization performance than SGD. The rate of the epochs

might also played a role in the ADE and FDE values. Based on

[39], increasing the epochs at a higher rate does not improve the

learning and might produce overfitting. Another reasons that

affect the ADE and FDE values is the batch size, where our

model has a batch size of 32 while model [28] has batch size of

8. Even though smaller batch size has the advantages of

0.2359
0.1834

0.4827

0.7099

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ADE FDE

Our LSTM
Model

[28]

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.26 APR 2025

86

minimizing the training time and less memory usage, larger

batch size are known to produce minimum amount of prediction

error [40], therefore, it will affect the model’s ADE and FDE.

Another reason that plays a role in the differences between ADE

and FDE is the sequence length used. The model [28] does not

utilized sequence length and our model utilized sequence length

of 10. This is supported by a research made by [41] where

sequence length might affects the model’s prediction

performance. Longer sequence length makes the model hard to

remember information that is relevant and shorter sequence

length makes the model to have insufficient context for making

predictions accurately. Last reason why our models have

greater ADE and FDE than model [28] is due to the usage of

multiple LSTM layers and Dropout layers with the additional

hyperparameter tuning. Multi-LSTM layers produces better

prediction performance due to its capability of capturing

temporal dependencies that are much more longer than single

LSTM layers and produces lower losses [42]. Adding dropout

layer to the LSTM is one of the techniques to overcome

overfitting and enhances the model’s performances [43].

Optimizing the model’s through hyperparameter tuning affect

the model’s prediction performance positively [44], and, with

the Random Search tuner utilized with this model, it provides

the most suitable hyperparameter’s for predicting the

coordinates accurately. Random Search was stated to have

greater advantages than other tree-based algorithms for

hyperparameter tuning [45].

As a summary, the reason for differences of ADE and FDE

between our model and model [28] is due to:

i. Type of Optimizer [36 , 37 , 38]

ii. Rate of Epochs [39]

iii. Batch Size [40]

iv. Sequence Length [41]

v. Multiple LSTM Layers [42] and Dropout Layers [43]

with Hyperparameter Tuning [44 , 45]

IV. CONCLUSION

 In this paper, three DL models for predicting trajectory were

analyzed. Each of the three models underwent hyperparameter

tuning to optimize the performance. Learning curve graph for

validation loss and training loss were plotted for each models.

Next, the actual path was plotted against the predicted path for

each model, displaying their accuracy and accuracy of

prediction. Lastly, the three models were evaluated using

regression metrics such as MSE, MAE, MAPE, and R2. It can

be concluded that the LSTM model has the greatest accuracy in

trajectory prediction when compared to the other models. The

LSTM model was also compared with other LSTM-based

models and showed greater prediction accuracy by achieving

ADE of 0.2359 and FDE of 0.1834, lower than the other LSTM-

based models. The trajectory prediction can be applied in terms

of handover performance where in a UAV-BS network, the UE

trajectory is predicted to target the next base station for

initiating handover. For future work, the Early Stopping method

could be included when training the DL model to optimize the

LSTM model. Additionally, it would be beneficial to analyze

the accuracy of prediction of the LSTM with different types,

such as Convolutional LSTM or LSTM with Attention

Mechanism.

ACKNOWLEDGMENT

This paper is part of research work supported by FRGS Grant

file no.: FRGS/1/2024/TK07/UITM/02/6 and School of

Electrical Engineering College of Engineering, Universiti

Teknologi MARA Shah Alam.

REFERENCES

[1] D. Mishra, H. Gupta and E. Natalizio, "SKY5G: Prototyping 5G Aerial
Base Station (UAV-BS) for On-Demand Connectivity from Sky," 2024

IEEE Wireless Communications and Networking Conference (WCNC),

Dubai, United Arab Emirates, 2024, pp. 1-6, doi:
10.1109/WCNC57260.2024.10570546.

[2] T. Hirai, K. Doi and N. Wakamiya, "Optimal Deployment of an Aerial

Base Station in Heterogeneous Cellular Networks for Heterogeneous
User Traffic Demands," 2023 IEEE 97th Vehicular Technology

Conference (VTC2023-Spring), Florence, Italy, 2023, pp. 1-6, doi:

10.1109/VTC2023-Spring57618.2023.10200246.
[3] J. Zhong, L. Zhang, M. Alhabo, J. Serugunda and S. N. Mugala, "A

Hybrid Scheme Using TOPSIS and Q-Learning for Handover Decision
Making in UAV Assisted Heterogeneous Network," in IEEE Access,

vol. 12, pp. 31422-31430, 2024, doi: 10.1109/ACCESS.2024.3368916.

[4] B. Hu, H. Yang, L. Wang and S. Chen, "A trajectory prediction based
intelligent handover control method in UAV cellular networks," in China

Communications, vol. 16, no. 1, pp. 1-14, Jan. 2019, doi:

10.12676/j.cc.2019.01.001.
[5] G. Guney et al., “An Overview of Deep Learning Algorithms and Their

Applications in Neuropsychiatry,” Clinical Psychopharmacology and

Neuroscience, vol. 19, no. 2, pp. 206–219, May 2021, doi:
https://doi.org/10.9758/cpn.2021.19.2.206.

[6] R. K. Mishra, G. Y. S. Reddy, and H. Pathak, “The Understanding of

Deep Learning: A Comprehensive Review,” Mathematical Problems in
Engineering, vol. 2021, pp. 1–15, Apr. 2021, doi:

https://doi.org/10.1155/2021/5548884.

[7] Laith Alzubaidi et al., “A survey on deep learning tools dealing with data
scarcity: definitions, challenges, solutions, tips, and applications,”

Journal of Big Data, vol. 10, no. 1, Apr. 2023, doi:

https://doi.org/10.1186/s40537-023-00727-2.
[8] J. Violos, Stylianos Tsanakas, Maro Androutsopoulou, Georgios

Palaiokrassas, and T. Varvarigou, “Next Position Prediction using

LSTM Neural Networks,” 11th Hellenic Conference on Artificial
Intelligence, pp. 232–240, Sep. 2020, doi:

https://doi.org/10.1145/3411408.3411426.

[9] P. Stojković and P. Tadić, “Object Location Prediction in Real-time
using LSTM Neural Network and Polynomial Regression,” arXiv, Jan.

2023, doi: https://doi.org/10.48550/arxiv.2311.13950.

[10] J. B. Fernandez, S. Little and N. E. O’Connor, "A Single-Shot Approach
Using an LSTM for Moving Object Path Prediction," 2019 Ninth

International Conference on Image Processing Theory, Tools and

Applications (IPTA), Istanbul, Turkey, 2019, pp. 1-6, doi:
10.1109/IPTA.2019.8936126.

[11] Z. Z., P. A. E. A., and H. M. H., “Predicting machine failure using

recurrent neural network-gated recurrent unit (RNN-GRU) through time
series data,” Bulletin of Electrical Engineering and Informatics, vol. 10,

no. 2, pp. 870–878, Apr. 2021, doi:

https://doi.org/10.11591/eei.v10i2.2036.
[12] P. Han, W. Wang, Q. Shi and J. Yang, "Real-time Short- Term Trajectory

Prediction Based on GRU Neural Network," 2019 IEEE/AIAA 38th

Digital Avionics Systems Conference (DASC), San Diego, CA, USA,
2019, pp. 1-8, doi: 10.1109/DASC43569.2019.9081618.

[13] D. Guan, N. Ren, K. Wang, Q. Wang, and H. Zhang, “Checkpoint data-

driven GCN-GRU vehicle trajectory and traffic flow prediction,”
Scientific Reports, vol. 14, no. 1, Dec. 2024, doi:

https://doi.org/10.1038/s41598-024-80563-3.

https://doi.org/10.9758/cpn.2021.19.2.206
https://doi.org/10.1155/2021/5548884
https://doi.org/10.1186/s40537-023-00727-2
https://doi.org/10.1145/3411408.3411426
https://doi.org/10.48550/arxiv.2311.13950
https://doi.org/10.11591/eei.v10i2.2036
https://doi.org/10.1038/s41598-024-80563-3

Zaki et.al.: Predicting User Trajectories using Deep Learning Algorithms

87

[14] S. Zhang, L. Wang, M. Zhu, S. Chen, H. Zhang and Z. Zeng, "A Bi-
directional LSTM Ship Trajectory Prediction Method based on Attention

Mechanism," 2021 IEEE 5th Advanced Information Technology,

Electronic and Automation Control Conference (IAEAC), Chongqing,
China, 2021, pp. 1987-1993, doi: 10.1109/IAEAC50856.2021.9391059.

[15] D. Sahadevan, H. P. M, P. Ponnusamy, V. P. Gopi, and M. K. Nelli,

“Ground-based 4d trajectory prediction using bi-directional LSTM
networks,” Applied Intelligence, Mar. 2022, doi:

https://doi.org/10.1007/s10489-022-03309-6.

[16] P. Casabianca, Y. Zhang, M. Martínez-García, and J. Wan, “Vehicle
Destination Prediction Using Bidirectional LSTM with Attention

Mechanism,” Sensors, vol. 21, no. 24, p. 8443, Dec. 2021, doi:

https://doi.org/10.3390/s21248443.
[17] J. Stourac et al., “Training and test datasets for the PredictONCO tool,”

Zenodo (CERN European Organization for Nuclear Research), Dec.

2023, doi: https://doi.org/10.5281/zenodo.10374835.
[18] M. Sivakumar, S. Parthasarathy, and Thiyagarajan Padmapriya, “Trade-

off between training and testing ratio in machine learning for medical

image processing,” PeerJ Computer Science, vol. 10, pp. e2245–e2245,
Sep. 2024, doi: https://doi.org/10.7717/peerj-cs.2245.

[19] C. Lingenfelder, M. Wurst, and P. Pompey, “Method and system for

predictive modeling,” Nov. 03, 2011 [Online]. Available:
https://patents.google.com/patent/WO2012084320A3/en

[20] Khashayar Ghadirinejad et al., “Supervised machine learning for the

prediction of post‐operative clinical outcomes of hip and knee
replacements: a review,” ANZ Journal of Surgery, vol. 94, no. 7–8, pp.

1228–1233, Apr. 2024, doi: https://doi.org/10.1111/ans.19003.
[21] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter

Optimization Yoshua Bengio,” Journal of Machine Learning Research,

vol. 13, pp. 281–305, 2012. ISSN:1532-4435.
[22] K. E. S. Pilario, Y. Cao, and M. Shafiee, “A Kernel Design Approach to

Improve Kernel Subspace Identification,” IEEE Transactions on

Industrial Electronics, vol. 68, no. 7, pp. 6171–6180, Jul. 2021, doi:
https://doi.org/10.1109/tie.2020.2996142.

[23] A. Graves and J. Schmidhuber, "Framewise phoneme classification with

bidirectional LSTM networks," Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., Montreal, QC, Canada,

2005, pp. 2047-2052 vol. 4, doi: 10.1109/IJCNN.2005.1556215.

[24] A. Jadon, A. Patil, and S. Jadon, “A Comprehensive Survey of

Regression Based Loss Functions for Time Series Forecasting,”

arXiv.org, Nov. 05, 2022. https://doi.org/10.48550/arXiv.2211.02989

[25] H. Wahid, N. I. Abdul Razak, and S. A. Che Abdullah, “Machine
Learning Model for Performance Prediction in Mobile Network

Management,” Journal of Electrical & Electronic Systems Research, vol.

21, no. OCT2022, pp. 101–107, Nov. 2022, doi:
https://doi.org/10.24191/jeesr.v21i1.013.

[26] S. Kim and H. Kim, “A new metric of absolute percentage error for

intermittent demand forecasts,” International Journal of Forecasting, vol.
32, no. 3, pp. 669–679, Jul. 2016, doi:

https://doi.org/10.1016/j.ijforecast.2015.12.003.

[27] D. Zhang, “A Coefficient of Determination for Generalized Linear
Models,” The American Statistician, vol. 71, no. 4, pp. 310–316, Dec.

2016, doi: https://doi.org/10.1080/00031305.2016.1256839.

[28] J. Yang, Y. Chen, S. Du, B. Chen and J. C. Principe, "IA-LSTM:
Interaction-Aware LSTM for Pedestrian Trajectory Prediction," in IEEE

Transactions on Cybernetics, vol. 54, no. 7, pp. 3904-3917, July 2024,

doi: 10.1109/TCYB.2024.3359237.

[29] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by Example,”

Computer Graphics Forum, vol. 26, no. 3, pp. 655–664, Sep. 2007, doi:

https://doi.org/10.1111/j.1467-8659.2007.01089.x.
[30] L. Matteo, C. Pasquale, and B. Lamberto, “Social and Scene-Aware

Trajectory Prediction in Crowded Spaces,” arXiv (Cornell University),

Jan. 2019, doi: https://doi.org/10.48550/arxiv.1909.08840.
[31] A. Mohamed, D. Zhu, W. Vu, M. Elhoseiny, and C. Claudel, “Social-

Implicit: Rethinking Trajectory Prediction Evaluation and The

Effectiveness of Implicit Maximum Likelihood Estimation,” arXiv
(Cornell University), Jan. 2022, doi:

https://doi.org/10.48550/arxiv.2203.03057.

[32] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention
in human crowds,” in Proc. Int. Conf. Robot. Autom., 2018, pp. 1–7 ,

doi: https://doi.org/10.48550/arxiv.1710.04689.

[33] S. Pellegrini, A. Ess, K. Schindler and L. van Gool, "You'll never walk
alone: Modeling social behavior for multi-target tracking," 2009 IEEE

12th International Conference on Computer Vision, Kyoto, Japan, 2009,

pp. 261-268, doi: 10.1109/ICCV.2009.5459260.

[34] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei and S.
Savarese, "Social LSTM: Human Trajectory Prediction in Crowded

Spaces," 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 961-971, doi:
10.1109/CVPR.2016.110.

[35] A. Gupta, R. Ramanath, J. Shi, and S. Keerthi, “Adam vs. SGD: Closing

the generalization gap on image classification.” , OPT2021: 13th Annual
Workshop on Optimization for Machine Learning , 2021. [Online].

Available: https://www.opt-ml.org/papers/2021/paper53.pdf .

[36] P. Zhou, J. Feng, C. Ma, C. Xiong, Steven, and Weinan E, “Towards
Theoretically Understanding Why SGD Generalizes Better Than ADAM

in Deep Learning,” Oct. 2020, doi:

https://doi.org/10.48550/arxiv.2010.05627.
[37] L. Luo, Y. Xiong, Y. Liu, and X. Sun. “Adaptive gradient methods with

dynamic bound of learning rate”. In Int’l Conf. Learning

Representations, 2019, doi: https://arxiv.org/abs/1902.09843v1.
[38] Nitish Shirish Keskar and R. Socher, “Improving Generalization

Performance by Switching from Adam to SGD,” arXiv, Jan. 2017, doi:

https://doi.org/10.48550/arxiv.1712.07628.
[39] Napoleão Verardi Galegale and C. I. Shimabukuro, “Deep Learning

Applied to Stock Prices: Epoch Adjustment in Training an LSTM Neural

Network,” International Journal of Business and Management, vol. 19,
no. 4, pp. 80–80, Jun. 2024, doi: https://doi.org/10.5539/ijbm.v19n4p80.

[40] J.-S. Hwang, S.-S. Lee, J.-W. Gil, and C.-K. Lee, “Determination of

Optimal Batch Size of Deep Learning Models with Time Series Data,”
Sustainability, vol. 16, no. 14, pp. 5936–5936, Jul. 2024, doi:

https://doi.org/10.3390/su16145936.
[41] Safwan Mahmood Al-Selwi, Mohd Fadzil Hassan, Said Jadid

Abdulkadir, and Amgad Muneer, “LSTM Inefficiency in Long-Term

Dependencies Regression Problems,” Journal of Advanced Research in
Applied Sciences and Engineering Technology, vol. 30, no. 3, pp. 16–

31, May 2023, doi: https://doi.org/10.37934/araset.30.3.1631.

[42] F. Xiao, “Time Series Forecasting with Stacked Long Short-Term
Memory Networks,” arXiv , Jan. 2020, doi:

https://doi.org/10.48550/arxiv.2011.00697.

[43] Y. Li et al., “A Survey on Dropout Methods and Experimental
Verification in Recommendation,” arXiv , Jan. 2022, doi:

https://doi.org/10.48550/arxiv.2204.02027.

[44] R. Hossain and D. Timmer, “Machine Learning Model Optimization

with Hyper Parameter Tuning Approach ,” Global Journal of Computer

Science and Technology: D Neural & Artificial Intelligence, vol. 21,

2021. [Online]. Available:
https://globaljournals.org/GJCST_Volume21/2-Machine-Learning-

Model-Optimization.pdf

[45] Muhammad Hevny Rizky, M. R. Faisal, I. Budiman, Dwi Kartini, and F.
Abadi, “Effect of Hyperparameter Tuning Using Random Search on

Tree-Based Classification Algorithm for Software Defect Prediction,”

IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol.
18, no. 1, pp. 95–95, Jan. 2024, doi:

https://doi.org/10.22146/ijccs.90437.

https://doi.org/10.1007/s10489-022-03309-6
https://doi.org/10.3390/s21248443
https://doi.org/10.5281/zenodo.10374835
https://doi.org/10.7717/peerj-cs.2245
https://patents.google.com/patent/WO2012084320A3/en
https://doi.org/10.1111/ans.19003
https://doi.org/10.1109/tie.2020.2996142
https://doi.org/10.48550/arXiv.2211.02989
https://doi.org/10.24191/jeesr.v21i1.013
https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/10.1080/00031305.2016.1256839
https://doi.org/10.1111/j.1467-8659.2007.01089.x
https://doi.org/10.48550/arxiv.1909.08840
https://doi.org/10.48550/arxiv.2203.03057
https://doi.org/10.48550/arxiv.1710.04689
https://www.opt-ml.org/papers/2021/paper53.pdf
https://doi.org/10.48550/arxiv.2010.05627
https://arxiv.org/abs/1902.09843v1
https://doi.org/10.48550/arxiv.1712.07628
https://doi.org/10.5539/ijbm.v19n4p80
https://doi.org/10.3390/su16145936
https://doi.org/10.37934/araset.30.3.1631
https://doi.org/10.48550/arxiv.2011.00697
https://doi.org/10.48550/arxiv.2204.02027
https://globaljournals.org/GJCST_Volume21/2-Machine-Learning-Model-Optimization.pdf
https://globaljournals.org/GJCST_Volume21/2-Machine-Learning-Model-Optimization.pdf
https://doi.org/10.22146/ijccs.90437

