COMPARATIVE STUDY OF PERFORMANCE OF CMOS DIFFERENTIAL AMPLIFIER WITH DIFFERENT TYPE OF CURRENT SOURCES

This thesis presented in partial fulfillments for the award of the Bachelor of Electrical Engineering (Honours)
UNIVERSITI TEKNOLOGI MARA

RAJA SITI NUR ADIIMAH BINTI RAJA ARIS Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR ACKNOWLEDGEMENT

In the name of Allah S.W.T, I would like to take this opportunity to express a special

gratitude to my supervisor Associate Professor Aishah Mohamed for her relentless

guidance, support and timely advice throughout the writing of this thesis. Without her

help, this thesis may not be materialized.

I am also would like to express my sincere gratitude to my lecturers, Associate Professor

Mahmud Ibrahim and Associate Professor Zulkifli Abdul Majid for helping me in

guidance ,troubleshooting the circuits and support throughout the development of the

project.

My utmost thanks also go to my family, especially my parent, who has given me their

warm and loving support and understanding throughout my education at UiTM.

Lastly but not least, I also want to express my appreciation to my best friends Alfee Azli

Yajid, who have helped and support me with valuable tips along the way and my course-

mate for their constant encouragement and assistance whenever it was needed.

Thank you very much. May Allah bless to all of you.

Raja Siti Nur Adiimah Binti Raja Aris

Faculty of Electrical Engineering

UNIVERSITI TEKNOLOGI MARA

Shah Alam, Selangor.

iv

ABSTRACT

In this work, the performance of Complementary Metal Oxide Semiconductor (CMOS) differential amplifier have been studied and analyzed based on AMI 1.6µ technology using different load and different constant current sources. The constant current sources are designed based on total current equal to 200µA with W/L value of CMOS transistor being defined from the I-V characteristics curve. PSPICE simulator tools are used to simulate and verify the circuit. The higher the values of Common Mode Rejection Ratio (CMRR) will contribute to the best performance of the CMOS differential amplifier. From the simulation, it is found that differential amplifier with active load and Wilson current source has the best performance.

TABLE OF CONTENT

<u>C</u>	CHAPTER				
	DECLA	iii iv v vi ix xii			
	ACKNO				
	ABSTRA				
	TABLE				
	LIST OF				
	LIST OF				
	LIST OF SYMBOLS				
	LIST OF ACRONYMS				xiv
1	CHAPTER 1 Introduction				
	1.1	Introd	luction		1
	1.2	Resea	rch objectiv	ve	1
	1.3	Thesis overview			2
	1.4	Scope	cope of work		
2	CHAPT	ER 2	Literatur	e review	
	2.1	Operation of MOSFET			4
	2.2	Principles of operation of the MOSFET			4
	2.3	Diffe	Differential amplifier operation		
		2.3.1	Working	9	
			2.3.1.1	Common mode gain (Acm)	9
			2.3.1.2	Differential mode gain (Ad)	11
		2.3.2	Common	Mode Rejection Ratio (CMRR)	12

CHAPTER 1

INTRODUCTION

1.1 Introduction

Differential amplifiers are class of amplifiers that process a difference between two signals rather than the absolute value of those signals. The differential amplifier is used on the input of an amplifier to allow input voltages to move around so that biasing of the gain stages is not affected. In integrated circuits, differential signals are often used to remove unwanted signals that are common to both sources. For example, if the information of a particular physical quantity is carried by the difference between signal A and signal B, any unwanted signals that adds directly to both input signals will be rejected when the difference of those signals is processed. The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) transistor is used in this project in analyzing differential amplifier. A MOSFET device can be made small and it occupies a small silicon area in an IC chip. There are two types of enhancement MOSFETs which are n-channel and p-channel. An n-channel enhancement is referred to as an NMOS and p-channel enhancement is referred to as PMOS. The CMOS differential amplifiers are analysed using different load which is passive, active and Lee load. Various types of current sources are also used in analysis the CMOS differential amplifier such as basic current source, cascade current source, Widlar current source and Wilson current source.

1.2 Research Objective

The objective of this project is to determine the performance of CMOS differential amplifier by using a different load and different current source that consider the highest Common Mode Rejection Ratio (CMRR). All the parameters that are used in this project are based on AMI 1.6µ technology level three. The current sources are designed based on total current equal to 200µA where the value of W/L CMOS transistor is defined from I-V characteristics curve. The best performance of CMOS differential amplifier is achieved when the highest value of CMRR is produced.