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Abstract— Autonomous vehicles (AV) are undergoing extensive 

research and development due to their disruptive potential and 

safety advantages. Critical challenges concerning AVs include the 

precision and accuracy of lane detection. Artificial intelligence 

(AI) systems for lane detection must be robust, which can be 

achieved by using many samples to train the system. However, due 

to the limitations of collection data to account for all road 

variations is impractical due to the variability of the data involved, 

especially for highly unique road curvatures. Recent 

improvements in Generative Adversarial Networks (GANs) make 

them an attractive tool for generating realistic data to circumvent 

this problem by generating high-quality images that can represent 

a variety of road conditions. In this paper, we trained a lightweight 

GAN architecture on Inverse Perspective Mapping (IPM) images 

captured by a roof-mounted camera to construct a bird’s eye view 

(BEV) of the road. After training, GAN was able to generate 

realistic images with a suitable degree of variation. These 

variations in the generated images have the potential to train a 

robust navigation computer aboard the AV to perform curvature 

estimation. Common testing methods for evaluating GANs are 

presented (such as SSIM, FID, IS, PSNR) demonstrate that the 

GAN was able to generate statistically proven realistic images with 

good variability compared to the original training images. 

Quantitative results show that images generated using the 

Exponential Moving Average (EMA) technique achieved a PSNR 

of 15.7947, SSIM of 0.3875, FID of 131.5848, and IS of 10.5015, 

indicating improved fidelity and realism over standard outputs. 

 
Index Terms— Generative Adversarial Network (GAN), 

Autonomous Vehicle (AV), Computer Vision, Data Synthesis, 

Inverse Perspective Mapping (IPM). 

 

I. INTRODUCTION 

1.1 Research Background  

 

AVs are self-driving vehicles able to steer and navigate 

without human intervention. They accomplish this by 

constantly monitoring their environment using an array of 

sensors and calculating the best action based on the inputs [1] . 

Autonomous vehicle development has a long history. The first 

important step towards constructing the first stand-alone AV 

was taken by Japan’s Tsukuba Mechanical Engineering 

Laboratory in 1977 [2]. Rather than depending on external road 

equipment, it was guided by machine vision, which uses images 

from built-in cameras to analyse the surrounding area. The 

prototype was configured to follow white traffic markings, and 

its speed could reach over 20 miles per hour. In 2004, the 

Defense Advanced Development Projects Agency (DARPA)  in 

the United States created the Grand Challenges Program, which 

accelerated AV research [3], [4]. As a result of the programmes, 

AVs that could traverse desert terrain were developed, and 

researchers were also able to put AVs on city streets through 

DARPA's Urban Challenge Program. AVs are under active 

research and development by major players in the automotive 

sector due to its future disruptive potential [5]. 

Due to the unconstrained nature of the driving environment, 

Machine Learning (ML) models are often employed to learn the 

proper controls in response to the information about its 

surroundings [6]–[9]. Importantly, an autonomous agent should 

be able to interact with multi-modal dynamic settings in real 

time while learning previously unseen typical and atypical 

scenarios.  

Recent advances in AI can be attributed in large part to the 

current acceleration in the development and manufacturing of 

Avs[10]. However, the precision, stability, and safety of AVs 

are still in their early stages. Several significant issues 

concerning AVs include lane detection precision and accuracy, 

recognition of objects of interest on the road, and the ability to 

estimate the distance between the AV and those objects [11], 

[12]. Many ML-based perception, prediction, and planning 

algorithms are ideally constructed from a large amount of 

diverse and representative data. Many real-world examples, on 

the other hand, either do not exist or appear in small numbers 

in the limited datasets used to train these models [13]. Because 

such environments are rarely available for training, the agent 

should be aware of its own capabilities and limitations [14]. The 

task of gathering training data for this is undoubtedly daunting. 

In this case, the use of synthetic training data is advantageous. 

The use of IPM to convert driver’s view samples to BEV 

images is crucial for AV applications, particularly for 

accurately observing and analyzing the road's contour and 
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curvature. IPM provides a top-down view of the road, 

eliminating perspective distortions inherent in the driver's view. 

This top view is essential for precise curvature estimation, as it 

presents a clearer and more consistent representation of the 

road's geometry. While driver’s view samples can be used for 

training, they often contain significant perspective distortions, 

occlusions, and variances in appearance due to changes in 

camera angle and position. These factors complicate the 

training process and reduce the accuracy of the generated 

images. By using BEV images obtained through IPM, the 

training data becomes more uniform and representative of the 

actual road layout, thereby enhancing the performance and 

reliability of the trained models for AV steering and navigation 

tasks.  

In this paper, we propose a LGAN trained on IPM images 

captured by a roof-mounted camera to create a detailed bird's-

eye view of road scenes. IPM effectively eliminates distortions, 

providing a clear view of lane markings and road curvature 

[15], which are crucial for AV navigation. Our LGAN enhances 

data diversity by generating realistic and varied IPM images, 

addressing common challenges like lighting inconsistencies 

and occlusions. We evaluated the realism of the generated 

images using established metrics, including Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index (SSIM), 

Fréchet Inception Distance (FID), and Inception Score (IS), 

demonstrating that the LGAN effectively mimics real-world 

data. These synthetic images improve AV training datasets, 

especially for robust lane detection and accurate curvature 

estimation, under diverse driving conditions. 

The LGAN  [16] was selected for this study due to its ability 

to achieve high-quality image synthesis while maintaining 

computational efficiency, making it particularly well-suited for 

environments with limited resources. Compared to other GAN 

architectures, LGAN reduces training instability and 

computational overhead, ensuring faster convergence and 

stable performance. This is especially beneficial for real-time 

applications, mobile devices, and personal computing 

environments where access to high-performance GPUs is 

limited. By incorporating stabilization techniques and 

optimizing the generator network, LGAN provides a balance 

between efficiency and image fidelity, making it a practical 

choice for applications that require rapid and reliable GAN-

based image generation without excessive computational 

demands 

The remainder of this paper examines the application of 

LGAN in AV navigation. Section 1.2 explores GANs’ role in 

AV systems, with a focus on road safety and object detection. 

Section 1.3 explores the applications of IPM in Avs. Section 2.0 

covers theoretical foundations, including GANs and Inverse 

Perspective Mapping (IPM). Section 3.0 outlines the 

methodology, including camera setup, data collection, IPM 

transformation to BEV scenes, and GAN training. Section 4.0 

presents results, analyzing the quality of GAN-generated IPM 

images using metrics such as SSIM, PSNR, FID and IS. The 

paper concludes with key findings and areas for further 

research. 

 

1.2  GANS in AVs 

The diversity and complexity of real-world driving scenarios 

often exceed the capacity of available datasets, limiting the 

training effectiveness of AV systems. To address this, GANs 

have become a valuable tool for generating synthetic data that 

captures rare or underrepresented events. Applications include 

pedestrian detection [17], road generation conditioned on 

steering commands [18], and vehicle trajectory prediction [19], 

among others. By enriching training datasets and enhancing the 

realism of simulated environments, GANs contribute 

significantly to the advancement of perception, planning, and 

decision-making systems in AVs. 

 

1.2.1 Road Safety (Object Detection) 

Object detection using GANs has emerged as a promising 

technique for enhancing the safety and perception capabilities 

of AVs. A GAN comprises two competing networks: a 

generator that produces synthetic data and a discriminator that 

distinguishes between real and generated inputs. This 

adversarial structure allows the system to learn complex visual 

patterns, enabling AVs to recognize and detect dynamic objects 

such as pedestrians, cyclists, and other vehicles with greater 

precision. The integration of GANs into object detection 

pipelines has contributed to improved navigation and real-time 

decision-making in complex driving environments. 

Numerous GAN-based frameworks have been developed to 

advance AV navigation. For example, Social GAN (SGAN) 

incorporates deep learning for trajectory prediction and 

outperforms traditional Long Short-Term Memory (LSTM) 

models by integrating object detection (YOLO v3) with real-

time tracking (SORT) [18]. Conditional architectures like the 

Conditional Speed GAN (CSG) simulate realistic pedestrian 

motion, offering enhanced modeling of multi-agent interactions 

in traffic scenarios [20]. Other studies focus on addressing 

specific perceptual tasks, a Conditional GAN was employed for 

speed bump detection with robust results despite limited data 

availability [12], while saliency-driven attention mechanisms 

using conditional GANs improved visual focus in cluttered 

scenes [17]. Moreover, spatio-temporal GANs (STC-GAN) 

have demonstrated effectiveness in video frame prediction and 

pedestrian trajectory estimation using datasets such as 

Cityscapes and CamVid [21], [22]. These contributions 

underscore the adaptability and strength of GANs in elevating 

situational awareness and responsiveness in AV systems. 

 

1.2.2  Navigation Systems 

Navigation systems are fundamental to the operation of AVs, 

requiring high levels of precision, adaptability, and real-time 

responsiveness. Recent developments have leveraged GANs to 

enhance these systems, particularly through the prediction of 

future frames in video sequences, an essential function for 

anticipating changes in dynamic environments. By generating 

synthetic data, GANs enable AVs to simulate diverse driving 

scenarios and foresee potential obstacles, thus improving 

navigation reliability. This integration of GANs with 

conventional navigation frameworks allows AVs to more 

effectively interpret their surroundings and respond proactively 
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in complex traffic situations. 

Path planning, one of the most critical yet challenging 

components of AV navigation, has also benefited from GAN-

based innovations. While traditional algorithms such as Rapidly 

Exploring Random Trees (RRT) can identify feasible routes, 

they often fall short in terms of optimality and computational 

efficiency. To overcome these limitations, the Conditional 

GAN-based CGAN-RRT* approach integrates the probabilistic 

modeling capabilities of CGANs with RRT*, enabling the 

generation of more optimal paths while reducing computational 

overhead [23]. Further advancements include the Continuous 

Conditional GAN (CCGAN), which produces varied road 

images under different steering angles, thereby enriching the 

training data and improving navigational accuracy [18]. 

Beyond path planning, GANs also support higher-order 

functionalities; for example, Video Prediction GANs 

(VPGANs) have outperformed traditional stochastic models in 

forecasting vehicle movements [24], while Enhanced Super-

Resolution GANs (ESRGANs) significantly improve shared 

sensory data quality, reducing blind spots and occlusions in 

real-world environments like KITTI [25]. Collectively, these 

advancements underscore the transformative role of GANs in 

making AV navigation systems more intelligent, reliable, and 

adaptable. 

 

1.2.3 Privacy Protection 

The integration of AVs into transportation has highlighted 

the need for robust privacy protection systems, especially as 

AVs gather extensive data from multiple sources, such as 

onboard cameras. This data can inadvertently expose sensitive 

information, raising privacy concerns. GANs provide a 

promising solution by generating synthetic datasets that 

preserve essential features while masking sensitive details, 

thereby mitigating data leakage risks. GAN-based privacy 

techniques are effective in securing the data used for navigation 

and decision-making, ensuring comprehensive coverage of 

privacy challenges associated with AVs. 

Recognizing these concerns, researchers have developed 

models such as Auto-Driving GAN (ADGAN-I and ADGAN-

II), which process visual inputs to produce privacy-preserving 

outputs. These models were specifically trained to conceal side-

channel information and protect the privacy of road users by 

countering adversarial location inference attacks [26]. 

ADGAN-I and ADGAN-II leverage GANs to accept photos 

and generate outputs that obscure sensitive details based on 

specific item classes, effectively balancing data utility and 

privacy. Real-world evaluations demonstrate that these models 

outperform existing methods, offering superior protection 

against unauthorized data access and enhancing the privacy of 

images and videos acquired by AVs. This underscores the 

significant potential of GAN-based frameworks in building 

secure, privacy-centric AV systems [27]. 

 

1.2.4 Dataset Generation 

The use of Generative Adversarial Networks (GANs) for 

dataset generation in autonomous vehicles (AVs) has gained 

attention due to its potential to reduce data collection time and 

enhance model training. By creating synthetic data that mimics 

real-world scenarios, GANs enable AVs to learn from more 

diverse datasets than those obtained from real-world driving, 

including challenging situations like heavy traffic or extreme 

weather. This automated approach also minimizes the need for 

manual data labeling in object detection tasks. 

Researchers have developed various GAN-based solutions to 

address limitations in existing datasets. For example, Ped-Cross 

GAN was customized to generate images of pedestrian 

behavior, with its loss function adjusted to Wasserstein to avoid 

exploding gradients [28]. Additionally, a CycleGAN network 

was employed to synthesize rare traffic conditions, such as 

nighttime driving, improving the performance of downstream 

object detection models by incorporating these challenging 

scenarios into the training process [13], [17]. Another study 

used a Dynamic Bayesian Network in combination with a bank 

of GANs to model a vehicle’s position and visual input, 

effectively identifying atypical situations in real-world driving 

tests [14]. These developments underscore the value of GANs 

in creating robust, diverse datasets for training AV systems, 

enhancing their ability to handle complex real-world scenarios. 

 

1.2.5  Lightweight GAN 

The Lightweight GAN (LGAN ) architecture by [16] was 

designed to address the challenges of high computational 

demands and instability in GAN training, particularly for high-

fidelity few-shot image synthesis. This architecture is 

particularly relevant in scenarios where computational 

resources are limited, such as on mobile or edge devices and 

personal computers without requiring access to high 

performance enterprise computational resources. It achieves a 

balance between model efficiency and image quality, making it 

a compelling choice for applications requiring fast and stable 

GAN training.  

The Lightweight GAN is specifically optimized for resource-

constrained environments, similar to the approaches discussed 

in the works of several researcher, which focus on reducing 

model size and computational requirements while maintaining 

image quality [29], [30]. Additionally, techniques such as 

knowledge distillation and quantization are employed to 

achieve significant reductions in model size, as seen in other 

lightweight GAN implementations [29]. In terms of training 

stability and speed, LGAN incorporated stabilization methods 

to address the common issue of training instability in GANs, a 

problem also tackled by another researcher  using self-attention 

mechanisms and spectral normalization [31].  

In terms of speed, the LGAN architecture was designed to 

accelerate training, akin to the Faster Projected GAN, which 

achieves a 20% speed increase by optimizing the generator 

network [32]. Lightweight GAN is capable of producing high-

quality images, a critical requirement for few-shot image 

synthesis tasks, with much faster computational time. This is 

comparable to the performance of other lightweight models that 

focus on maintaining image quality despite reduced 

computational resources [30], [33]. Additionally, the ability to 

capture long-range dependencies, as highlighted in the work by 

[33], is crucial for generating high-fidelity images and is a 
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feature that the Lightweight GAN shares with other advanced 

models. 

In terms of model size and parameters, the Lightweight GAN 

offers a competitive balance of size and performance compared 

to its mobile-specific alternatives, making it suitable for real-

time applications. Compared to models like MobileFSGAN, 

which is designed for mobile devices, making it suitable for 

real-time applications [34][6]. 

 

1.3 Applications of Inverse Perspective Mapping in AVs 

IPM is a fundamental technique in autonomous vehicle 

navigation, transforming perspective views from vehicle-

mounted cameras into bird’s-eye views. This transformation is 

essential for accurate environmental perception, facilitating 

obstacle detection, path planning, and high-definition mapping. 

Recent research highlights the significance of IPM in enhancing 

the accuracy and efficiency of autonomous systems by 

improving visual data processing. However, challenges such as 

perspective distortion due to road inclinations and variations in 

camera properties necessitate ongoing refinement in IPM 

methodologies to ensure robust performance across diverse 

driving conditions. 

IPM has been successfully applied in various domains of 

autonomous driving. One notable application is high-definition 

map construction, where frameworks such as GenMapping 

leverage IPM to decouple camera parameters from the training 

process, thereby improving generalization across different 

visual sensors. This approach enhances mapping accuracy and 

speed, yielding superior performance in both semantic and 

vectorized mapping tasks [35]. Additionally, IPM is widely 

used in camera-based autonomous driving systems, where it 

aids in transforming camera views into bird’s-eye perspectives 

for improved path planning and obstacle detection. Research 

suggests that integrating stereo vision and deep learning-based 

methods can mitigate IPM’s inherent distortions and enhance 

its reliability [36]. Furthermore, IPM plays a crucial role in 

visual parking and occupancy mapping, offering LiDAR-like 

performance using visual inputs. By integrating ego-motion 

data, this method reduces the need for labor-intensive labeling 

and significantly lowers implementation costs [37]. 

Several enhancements and techniques have been proposed to 

optimize IPM’s effectiveness. In lane tracking applications, 

IPM is used to adjust camera perspectives and apply 

probabilistic Hough transforms, allowing for real-time lane 

edge detection and steering adjustments with minimal 

computational overhead. This method eliminates the need for 

extensive model training, making it an efficient solution for 

scaled autonomous vehicles [38]. Another key advancement is 

monocular camera-based bird’s-eye view generation, which 

relies on lane detection and road infrastructure clues to infer 

waypoints for vehicle motion planning. This technique 

facilitates navigation in environments where prior location data 

is unavailable, further expanding the utility of IPM in 

autonomous systems [39].  

 

Despite its advantages, IPM presents several challenges that 

require careful consideration. The accuracy of IPM-based 

transformations is highly dependent on road conditions and 

camera calibration, necessitating continuous refinement 

through correction techniques and alternative methodologies. 

Moreover, integrating IPM with complementary technologies 

such as LiDAR and deep learning has shown promise in 

overcoming its limitations, yet computational demands and 

susceptibility to adversarial perturbations in image processing 

remain key concerns [15], [36]. Addressing these issues is 

critical for ensuring the robustness and efficiency of IPM-based 

autonomous navigation systems. Moving forward, research 

should focus on optimizing computational efficiency, 

enhancing IPM’s resilience to environmental variations, and 

exploring hybrid approaches that combine multiple sensing 

modalities to achieve more reliable and adaptive autonomous 

vehicle navigation. 

II. THEORETICAL BACKGROUND  

The rapid advancement of AV technology has brought forth 

a critical need for high-quality data and robust perception 

systems. Among the foundational components of AV 

perception and navigation are geometric transformations and 

synthetic image generation techniques that enhance the 

reliability and diversity of training datasets. This section 

provides an overview of the theoretical principles underpinning 

the research, beginning with IPM, a technique essential for 

transforming perspective views into bird’s-eye representations. 

Following this, the structure and innovations of the proposed 

LGAN are presented, detailing its mechanisms for efficient 

image generation. Lastly, a comprehensive discussion of the 

quantitative metrics used to evaluate the realism and utility of 

the generated images, namely PSNR, SSIM, FID, and IS 

ensures a rigorous assessment of image quality for AV 

navigation tasks. 

 

2.1 Inverse Perspective Mapping (IPM)   

IPM is a vital geometric transformation technique for AV, 

converting driver’s view images into BEV images. By using 

calibrated camera parameters, including position, orientation, 

and intrinsic properties, IPM reprojects pixels to simulate an 

overhead view of the road. This transformation eliminates 

perspective distortions, ensuring that parallel lines appear 

parallel, and distances are uniformly scaled, providing a clear 

and accurate depiction of road geometry. Accurate IPM is 

essential for lane detection and curvature estimation in AV 

systems and advanced driver-assistance systems (ADAS), as 

any error in calibration can lead to distortions in the 

transformed BEV image. The transformation is mathematically 

represented by Equation 2.1. 

 

(
𝑈
𝑉
1
) = 𝐾 ⋅ [𝑅 ∨ 𝑇] ⋅ (

𝑋
𝑌
𝑍
1

) 

 

(2.1) 

 

 

Where  
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• (
𝑈
𝑉
1
) are the pixel coordinates in the image. 

• 𝐾 is the camera intrinsic matrix. 

• [𝑅 ∨ 𝑇] is the extrinsic matrix combining rotation R 

and translation T. 

• (

𝑋
𝑌
𝑍
1

) are the real-world coordinates. 

For the BEV transformation, the Z coordinate (height) is set 

to zero, simplifying the equation: 

 

(
𝑈
𝑉
1
) = 𝐾 ⋅ 𝑅 ⋅ (

𝑋
𝑌
1
) 

 

(2.2) 

 

IPM is beneficial for AV applications as it removes 

perspective distortions, ensuring consistent scale and 

orientation, which is vital for accurate lane detection and 

curvature estimation. By converting driver’s views into 

standardized BEV, IPM enhances data uniformity and improves 

training dataset quality. This transformation simplifies the 

analysis of road features, aiding in more effective machine 

learning model training. Consequently, IPM-generated BEV 

images lead to more accurate AV performance in tasks such as 

lane detection, obstacle recognition, and path planning. 

 

2.2 Generative Adversarial Network   

The LGAN, developed for efficient high-resolution image 

generation, is designed to be computationally light, enabling 

training on a single GPU within a short period. Key innovations 

include skip-layer excitation in the generator and autoencoding 

self-supervised learning in the discriminator. The skip-layer 

excitation mechanism enhances information flow by adding the 

output of one layer to the input of a later layer, preserving high-

frequency details and stabilizing training. This method not only 

improves image quality but also accelerates the overall training 

process, as described mathematically in Equation 2.3. 

 

𝐺′(𝑥) = 𝐹(𝑥) + 𝑥 (2.3) 

Where 𝐺′(𝑥) is the enhanced feature map, 𝐹(𝑥) is the 

transformation applied by the generator, and 𝑥 is the input to 

the generator.  

The LGAN discriminator utilizes self-supervised learning 

with an auxiliary autoencoder, enhancing its ability to 

distinguish real from fake images by reconstructing them. The 

autoencoder is trained alongside the discriminator, with the 

reconstruction loss integrated into the total loss function, as 

described in Equation 2.4. Additionally, LGAN improves 

training efficiency through mixed precision, combining 16-bit 

and 32-bit floats to speed up training by up to 33% and save up 

to 40% of memory, detailed in Equation 2.5. Data augmentation 

techniques, modeled by Equation 2.6, further boost 

performance, especially in low-data scenarios. 

 

𝐿𝐷 = 𝐿𝑎𝑑𝑣 + 𝜆𝐿𝑟𝑒𝑐 (2.4) 

 

where 𝐿𝑎𝑑𝑣is the adversarial loss, 𝜆𝐿𝑟𝑒𝑐is the reconstruction 

loss from the autoencoder, and 𝜆 is a weighting factor. 

 

    𝐿𝑜𝑠𝑠 = 𝛼 ∙ 𝐿𝑜𝑠𝑠16−𝑏𝑖𝑡 + 𝛽 ∙ 𝐿𝑜𝑠𝑠32−𝑏𝑖𝑡 (2.5) 

 

Where 𝛼 and 𝛽 are scaling factors for the losses computed in 

different precisions. 

 

𝐼′ = 𝑇(𝐼) + 𝐶(𝐼) + 𝐴(𝐼) (2.6) 

Where 𝐼′is the augmented image, 𝑇(𝐼) is the translation 

augmentation, 𝐶(𝐼)is the color adjustment, and 𝐴(𝐼)is the 

cutout augmentation. 

 

2.3 Quantitative Evaluation of Synthetic Image Quality  

To assess the realism of the generated images, several widely 

used metrics were employed, including PSNR, SSIM, FID, and 

IS [27], [40]. These metrics provide a comprehensive 

evaluation of image quality and authenticity, ensuring a robust 

analysis of the generated images. 

 

2.3.1 Peak Signal-to-Noise Ratio (PSNR) 

  The PSNR is a fundamental metric in image processing, 

widely used to evaluate the quality of images generated by 

GANs. It quantifies the ratio between maximum pixel intensity 

and noise that degrades image quality, based on the mean 

squared error (MSE) between the original and generated 

images. Expressed in decibels (dB), a higher PSNR indicates 

closer resemblance to the original image, signifying minimal 

distortion. In IPM-based applications, high PSNR values 

confirm that the GAN has effectively replicated crucial 

structural and geometric features, essential for accurate 

autonomous vehicle navigation. The formula for PSNR is 

presented in equation 2.7: 

  

𝑃𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) 

(2.7) 

 

W h e r e : 

• MAX is the maximum possible pixel value of the image. 

For an 8-bit image, this value is 255. 

• MSE is the mean squared error between the original and 

the generated images. 

 

 2.3.2 Structural Similarity Index (SSIM) 

  SSIM is a crucial metric for evaluating the quality of images 

generated by GANs, particularly in assessing perceptual 

realism. Unlike traditional metrics like PSNR that focus on 

pixel-level differences, SSIM considers luminance, contrast, 

and structural information, making it more aligned with human 

visual perception[40]. In this research, SSIM is used to measure 

how closely generated IPM images resemble ground truth data, 
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ensuring accurate representation of patterns and textures critical 

for autonomous vehicle navigation. The SSIM index is 

mathematically expressed in Equation 2.8. 

 

 
(2.8) 

 

Where 

• 𝑥 and 𝑦 are the two images being compared. 

• 𝐿(𝑥, 𝑦)are the luminance, contrast, and structure 

components, respectively. 

• 𝛼, 𝛽 and 𝛾 are parameters that determine the relative 

importance of each component (typically set to 1). 

 

The SSIM value ranges from -1 to 1, where 1 indicates 

perfect structural similarity between the two images, and values 

closer to 1 suggest higher image quality. 

 

2.3.3 Fréchet Inception Distance (FID)  

The FID is a metric that evaluates the quality and diversity 

of generated images by comparing their feature distributions to 

those of real images. Unlike metrics such as PSNR and SSIM, 

which assess individual images, FID examines the entire image 

set as a distribution. It is calculated by passing both real and 

generated images through a pre-trained Inception v3 model to 

extract features, assuming a multivariate Gaussian distribution. 

FID then computes the Fréchet distance between these 

distributions, as mathematically represented in Equation 2.9. 

  

𝐹𝐼𝐷 = ‖𝜇𝑟 − 𝜇𝑔‖
2

+ 𝑇𝑟 (𝛴𝑟 + 𝛴𝑔

− 2(𝛴𝑟𝛴𝑔)
1
2) 

(2.9) 

Where: 

• 𝜇𝑟and 𝜇𝑔 are the mean vectors of the real and 

generated image features, respectively. 

• 𝛴𝑟and 𝛴𝑔 are the covariance matrices of the real 

and generated image features, respectively. 

• ‖𝜇𝑟 − 𝜇𝑔‖
2

is the squared distance between the 

means of the two distributions. 

• 𝑇𝑟 (𝛴𝑟 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔)
1

2)represents the 

trace of the covariance matrices. 

 

2.3.4 Inception Score (IS)  

The IS is derived from the predictions of a pre-trained 

Inception v3 model, which was initially designed for image 

classification tasks on the ImageNet dataset. The Inception v3 

model outputs a probability distribution over different classes 

for each input image. The Inception Score is calculated based 

on two key properties: the image's predicted class distribution 

and the distribution of predictions across the entire dataset. 

  The IS is calculated as follows equation 2.10: 

 

𝐼𝑆 = 𝑒𝑥𝑝(𝐸𝑥[𝐾𝐿(𝑝(𝑦 ∨ 𝑥)

∨ 𝑝(𝑦))]) 

(2.10) 

  

Where: 

• 𝑝(𝑦 ∨ 𝑥)is the conditional label distribution 

given an image 𝑥. 

• 𝑝(𝑦) is the marginal label distribution across 

the generated dataset. 

• 𝐾𝐿(𝑝(𝑦 ∨ 𝑥) ∨ 𝑝(𝑦))is the Kullback-Leibler 

divergence between the conditional and marginal 

distributions. 

   

In practice, a higher Inception Score suggests that the GAN 

has successfully generated a set of images that are both sharp 

and diverse, characteristics that are essential for effective 

training datasets in autonomous vehicle navigation. 

III. METHODOLOGY 

The research involved five key steps as shown in Fig. 1. 

Initially, a camera was mounted and calibrated on the roof of a 

vehicle to capture images while the vehicle was in motion. 

Using the calibration parameters, the acquired images were 

transformed into BEV images through an IPM transformation. 

These BEV images served as the dataset for training LGAN. 

Following the training phase, the output was rigorously 

analyzed and validated to assess the effectiveness of the LGAN 

in generating realistic IPM images. 

 

 
Fig. 1.  Research flowchart 

3.1 Hardware Description  

The specifications of the computer used in the experiments 

are shown in Table I. 

TABLE I: EXPERIMENT HARDWARE SPECIFICATION 

3.2 Camera Mounting and Calibration   

The Point Grey Blackfly camera (BFLY-U3-23S6C-C) 

featuring a Sony IMX249 CMOS sensor with a resolution of 

1920 × 1200 pixels and a frame rate of 41 FPS was mounted on 

the roof of a Proton Persona 1.6L at an 8-degree angle and 1.4 

meters height. Prior to data collection, the camera was 

Item Specification 

Central Processing Unit (CPU) AMD Threadripper 3990x 
Graphics Processing Unit (GPU) 3 × GTX 1080 Ti 

Random Access Memory (RAM) 64 GB 

Operating System Linux Ubuntu 20.04.3 LTS 
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calibrated using a 6x8-inch checkerboard, which was 

repositioned to capture various angles. MATLAB calibration 

software detected checkerboard edges to determine accurate 

camera settings, and reprojection errors were used to refine 

these parameters, ensuring precise image acquisition. 

3.3 IPM For BEV Conversion   

IPM was used to transform the driver’s view samples into 

BEV. Samples of the conversion are shown in Fig. 2. The IPM 

used the camera parameters to synthesize the BEV images. The 

images were then resized into size 1024 x 1024 as inputs to 

LGAN using bicubic interpolation. 

 

   

Fig. 2.  Samples of BEV conversion 

3.4 Data Collection  

The road images were taken in an around UiTM Dengkil 

Branch, Dengkil, Malaysia, during daylight hours in sunny 

weather. The photographs were taken at a frame rate of 

approximately 30 frames per second, yielding 12,207 JPEG still 

images. 1,795 images were removed (Fig. 3) from the dataset 

due to several factors such as camera initialization, pedestrian, 

and road occlusion, resulting in the final 10,412 images. Several 

training samples are shown on Fig. 4. 

In developing a vision system for an autonomous vehicle 

(AV) using Inverse Perspective Mapping (IPM), it was essential 

to begin with controlled conditions to establish a reliable 

baseline. Sunny weather provides optimal lighting, reducing 

potential distortions from shadows, rain, or fog. This ensures 

that errors in the perspective transformation are attributed to the 

IPM method itself rather than external environmental factors. 

By first validating the system under ideal conditions, we ensure 

that fundamental geometric transformations and feature 

extractions, such as lane markings and object distances, are 

accurately processed before introducing additional 

complexities. 

The decision to record data exclusively in sunny weather 

follows a standard incremental validation approach commonly 

used in AV development. Initial testing under clear conditions 

helps isolate and fine-tune system parameters without 

interference from adverse weather artifacts. Once the core 

system is validated, the next phases will involve testing under 

diverse conditions, including rain, fog, and low-light 

environments. This step-by-step methodology prevents 

compounding errors and allows for systematic debugging, 

making it easier to identify whether performance issues arise 

from the IPM framework itself or from environmental 

variations. 

3.5 GAN Training   

GAN training involves two competing networks: the 

generator and the discriminator. Both are optimized 

simultaneously using the Adaptive Moment Estimation 

(ADAM) algorithm, chosen for its computational efficiency 

and modest memory requirements, particularly in handling 

networks with many parameters. Unlike traditional 

backpropagation, ADAM requires minimal parameter tuning, 

making it suitable for complex training processes. 

 

   

Fig. 3.  Removed samples (from left: initialization, containing    

vehicles, camera tilted during data collection). 

 

 

   

 Fig. 4.  Accepted training samples 

 

The GAN structure in this study follows the LGAN 

implementation, which integrates skip-layer excitation in the 

generator and autoencoding self-supervised learning in the 

discriminator [16]. These modifications enhance training speed, 

even on modest hardware, by improving information flow and 

stability. During training, the generator attempts to create 

synthetic images that deceive the discriminator, while the 

discriminator strives to accurately differentiate between real 

and fake images. This adversarial process refines both networks 

until the discriminator can no longer distinguish between 

authentic and generated images, leading to high-quality outputs. 

For details on the LGAN architecture, refer to [16]. The training 

parameters for LGAN are shown in Table II. 

TABLE II: TRAINING PARAMETER VALUES 

Parameter Value 

Training Algorithm Adaptive Moment Estimation (ADAM) 

Epochs 200,000 
Output Size 512 × 512 pixels 

IV. RESULTS AND DISCUSSION   

The application of GANs for generating realistic inverse 

perspective mapping IPM images represents a significant 

advancement in autonomous vehicle navigation systems. As 

shown in Table III, this study produced 1,653 images from an 
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original dataset of 1,307, achieving a 75% acceptance rate, with 

1,238 images deemed suitable for further use. This outcome 

highlights both the potential of GANs to augment training 

datasets and their limitations, underscoring the need for 

continued refinement. 

Table IV demonstrates that the LGAN effectively expanded 

the dataset, enhancing robustness by increasing data diversity. 

However, the rejection of 415 images points to challenges such 

as mode collapse, insufficient diversity, or inaccuracies in 

perspective rendering. These limitations indicate areas for 

improvement in the GAN architecture and training process to 

further enhance image quality. Rejected images, while 

inevitable, provide critical feedback during the GAN training, 

as the generator iteratively learns to produce higher-quality 

outputs. This competitive dynamic between the generator and 

discriminator ensures continuous refinement, leading to more 

realistic and reliable results. 

TABLE III: THE DISTRIBUTION OF ORIGINAL IMAGES 

Type Acceptable 

Straight 503 

Curve Left 400 
Curve Right 404 

Total 1307 

TABLE IV: THE DISTRIBUTION OF THE ACCEPTED 

GENERATED IMAGES 

Type Acceptable 

Straight 686 

Curve Left 434 
Curve Right 118 

Reject 415 

Total 1653 

 

4.1 Comparison Between Accepted Images and Original 

Images  

  A comparative analysis between the accepted IPM images 

(Fig. 5(a)) and the original samples (Fig. 5(b)) reveals a high 

degree of visual similarity, underscoring the suitability of the 

generated images for training autonomous vehicle navigation 

systems. The accepted images retain critical visual features 

such as well-defined edges, consistent lane markings, and 

clearly delineated road boundaries. These attributes are 

essential for accurate lane detection and localization, enabling 

machine learning models to interpret and navigate complex 

road environments with greater reliability. 

In addition to geometric consistency, the accepted images 

exhibit high fidelity in texture and color, closely mirroring the 

visual characteristics of the original dataset. As shown in Fig.  

5(a), the realistic rendering of road surface textures and color 

variations enhances the authenticity of the synthetic data, 

thereby improving model performance under real-world driving 

conditions. The perspective transformations in the accepted 

images preserve accurate spatial proportions, which are crucial 

for tasks such as distance estimation and path planning in 

autonomous systems. 

Another significant quality of the accepted IPM images is 

their minimal presence of visual noise and artifacts. In contrast 

to rejected samples, these images are free from distortions or 

speckles that could compromise learning accuracy. Lighting 

and shadow consistency further reinforces their realism, 

contributing to more robust depth perception and spatial 

orientation. The clarity of lane markings, realistic shading, and 

faithful replication of surface textures collectively demonstrate 

the LGAN’s effectiveness in generating high-quality, 

application-ready training data. Overall, the accepted images 

reflect the LGAN’s potential to enrich datasets with realistic, 

diverse samples that enhance the generalization capabilities of 

autonomous vehicle navigation models. 

    

 

  
Fig. 5(a). Accepted 

sample 

Fig. 5(b). Sample from 

original 

Fig.  5. Comparison between accepted images and original 

images    

  

4.2 Comparison Between Rejected Images and Original Images  

A comparison between the rejected inverse perspective 

mapping (IPM) images (Fig. 6(a)) and the original images (Fig. 

6(b)) highlights several limitations that make the rejected 

samples unsuitable for training autonomous vehicle navigation 

systems. The most prominent issue is the lack of visual clarity 

and structural consistency. Blurred and misaligned lane 

markings particularly around curves are frequently observed, 

undermining the accuracy of lane detection. These distortions 

compromise the ability of machine learning models to extract 

reliable spatial cues, which are essential for precise lane 

positioning and safe navigation in dynamic driving 

environments. 

Moreover, the rejected images exhibit unnatural texture 

patterns, color inconsistencies, and significant perspective 

distortions. These artifacts introduce discrepancies that deviate 

from real-world conditions, potentially confusing learning 

algorithms during training. Perspective inaccuracies result in 

misrepresented road geometries, further degrading spatial 

awareness. Additionally, the presence of visual noise such as 

random speckles, streaks, and geometric warping reduces 

image quality and can adversely affect model generalization. In 

contrast, the original images offer clean, geometrically accurate 

data suitable for learning robust navigation behaviors. Overall, 

the rejected samples in Fig. 6(a) demonstrate critical 

deficiencies that diminish their utility, emphasizing the need for 

improvements in GAN architecture, loss functions, and image 
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quality control to ensure the generation of high-fidelity IPM 

images for autonomous driving applications. 

 

  
Fig 6(a). Rejected sample Fig. 6(b). Sample from 

original 

Fig. 6. Comparison between accepted images and original 

images 

4.3 Images Training Generated   

In this study, LGANs were utilized to generate IPM images 

for autonomous vehicle training. To improve output stability 

and quality, the Exponential Moving Average (EMA) technique 

was applied alongside standard (normal) image generation. 

EMA operated by averaging the generator's weights across 

multiple iterations, thereby smoothing fluctuations during 

training. This approach helped reduce noise and enhanced the 

consistency of the generated images. 

A visual comparison between normal and EMA-generated 

images revealed clear distinctions in quality and structure. As 

illustrated in Fig. 7(a), normal outputs frequently exhibited 

artifacts, irregular textures, and inconsistencies resulting from 

unstable training dynamics. Conversely, EMA outputs, shown 

in Fig. 7(b), displayed improved clarity, uniform textures, and 

well-defined features. This improvement demonstrated the 

effectiveness of EMA in mitigating training noise, preserving 

key structural elements, and enhancing the realism of synthetic 

IPM images. Overall, EMA proved to be a valuable method for 

producing higher-fidelity data suitable for training robust 

autonomous vehicle navigation models. 

 

4.4 Iteration Analysis   

The iterative development of the LGAN in generating 

inverse perspective mapping (IPM) images is illustrated in 

Figure 8. At 0 iterations (Fig. 8(a)), the LGAN is entirely 

untrained, producing a blank black image that reflects the 

absence of learned features or structure. By 5,000 iterations 

(Fig.  8(b)), the model begins to generate rudimentary 

geometric patterns; however, these outputs remain noisy and 

incoherent, indicating that the network is only beginning to 

capture the underlying data distribution. 

Improvements become more evident at 10,000 iterations 

(Fig. 8(c)), where triangular shapes start to form with greater 

clarity and reduced noise, although challenges related to texture 

and contrast remain. By 15,000 iterations (Fig. 8(d)), the 

network exhibits more stable and consistent outputs, with 

clearer geometric patterns and fewer artifacts, suggesting that 

the LGAN has begun to internalize the structural characteristics 

of IPM images. 

 

 

 

 

 

Fig. 7(a). Normal 

image 

 

 

 

 

Fig. 7(b). EMA 

image 

Fig. 7. Comparison between Normal and EMA  

 

From 20,000 to 30,000 iterations (Fig. 8(e)–8(g)), the LGAN 

produces high-fidelity, visually coherent images that exhibit 

accurate textures, consistent shading, and realistic spatial 

distribution. This stage marks the model’s convergence toward 

the target data distribution, demonstrating its ability to 

synthesize structured and high-quality IPM images. The 

progression from untrained randomness to refined outputs 

highlights the effectiveness of the LGAN’s learning process, 

reinforcing its suitability for generating synthetic data in 

autonomous vehicle navigation tasks. 

 

4.5 Quantitative Performance Assessment   

Four primary metrics, PSNR, SSIM, FID, and IS are used to 

evaluate the quality of LGAN-generated images, each 

providing unique insights into image fidelity and realism. 

PSNR measures pixel-level accuracy by comparing generated 

images to reference images, focusing on image fidelity. SSIM 

extends this by assessing structural similarity, capturing 

luminance and contrast aspects that align more closely with 

human perception. FID compares the feature distribution 

between real and generated images, offering a comprehensive 

measure of realism and diversity. IS evaluates both the 

recognizability and variety of generated images using a pre-

trained classifier, thus addressing quality and diversity across 

classes. Collectively, these metrics provide a robust framework 

for assessing the fidelity, perceptual quality, and distributional 

alignment of GAN outputs. 

Table V presents a comparative analysis of normal images 

and those generated using EMA technique, with each image set 

evaluated through FID, IS, PSNR, and SSIM. The data suggests 

that the EMA technique significantly enhances image quality 

and realism. For example, FID, which quantifies the similarity 

between generated and real image distributions, is substantially 
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lower for EMA images (131.5848) than for normal images 

(174.2456), indicating that EMA images are more closely 

aligned with real data. Similarly, PSNR, which evaluates pixel 

fidelity, improves from 15.3717 for normal images to 15.7947 

for EMA images, suggesting lower distortion levels. SSIM also 

increases from 0.3491 to 0.3875, indicating improved structural 

similarity and a closer match to reference images. 

 

 
Fig. 8. Iteration Between 0 Iteration and 30,000 Iteration 

TABLE V: COMPARATIVE ANALYSIS OF TWO SETS OF 

GENERATED IMAGES  

Test FID IS PSNR SSIM 

Normal 

Images 

174.2456 10.8954 ± 
1.2970 

15.3717 0.3491 

EMA 

Images 

 

131.5848 10.5015 ± 

1.2386 

15.7947 0.3875 

Although the IS shows a slight decrease for EMA images 

from 10.8954 ± 1.2970 to 10.5015 ± 1.2386 this reduction is 

minimal. IS measures both image diversity and quality, and the 

slight drop may suggest a small compromise in diversity while 

overall realism and fidelity improve. This trade-off appears 

favorable, as the reduced FID and increased PSNR and SSIM 

demonstrate enhanced realism and structural accuracy in EMA 

images compared to normal outputs. In summary, the EMA 

technique proves effective in producing high-quality and 

realistic IPM images, with minimal impact on diversity, making 

it a valuable enhancement for GAN performance in applications 

requiring high fidelity and realism.   

V. CONCLUSION 

This research has demonstrated the effectiveness of using 

LGANs to generate realistic IPM images for enhancing the 

training of AV navigation systems. By increasing the dataset 

from 1,307 to 1,653 images with a 75% acceptance rate the 

GAN significantly improved data diversity, a critical factor in 

training robust models for lane detection and curvature 

estimation. The contrast between accepted and rejected images 

highlights the importance of visual fidelity in terms of texture, 

color, and structural consistency, which directly affects the 

utility of synthetic images for AV training. 

Moreover, the integration of the EMA technique during 

LGAN training further enhanced image quality. EMA 

generated images exhibited greater clarity, reduced noise, and 

superior structural stability compared to standard outputs. 

Quantitative analysis confirmed these improvements, with 

EMA images achieving lower FID, higher PSNR, and improved 

SSIM. These findings validate EMA as an effective technique 

for stabilizing GAN training and producing high-quality IPM 

images suitable for real-world AV applications. 

Beyond technical validation, the findings have promising 

implications for real-world AV development. The ability to 

generate diverse and realistic IPM images offers a scalable 

solution for augmenting datasets in data-scarce environments, 

particularly under rare or hazardous driving conditions. These 

synthetic datasets can accelerate the training of perception 

models for commercial AVs, support the testing of navigation 

algorithms in simulated environments, and reduce the 

dependence on expensive and time-consuming data collection 

processes. Practical implementation could involve deploying 

lightweight GAN architectures in edge-computing platforms on 

AVs or within cloud-based training pipelines. 

Future research should aim to further generalize the model 

across varying environmental conditions, including rain, fog, 

and nighttime scenarios. This may involve combining real-

world datasets with synthetic augmentation strategies or 

integrating adaptive IPM methods driven by deep learning. By 

addressing these practical considerations, this work takes a 

significant step toward scalable, efficient, and reliable data 

augmentation for real-world AV training. 
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