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Abstract—This paper addresses the limitations of existing slider 

CAPTCHA recognition methods by proposing an enhanced 

approach based on the YOLOv5 model and introduces a novel 

evaluation metric, mean Relative Offset (mRO), which more 

accurately assesses the x-coordinate of gap location prediction 

compared to traditional mean Average Precision (mAP). 

Furthermore, a novel Offset-based Intersection over Union 

(OIoU) loss function is proposed, specifically designed to prioritize 

the accuracy of horizontal displacement, crucial for slider 

CAPTCHA detection. The study also presents Fixed Quantity 

Prediction-based Non-Maximum Suppression (FQP-NMS), a 

modified NMS algorithm ensuring a fixed number of predicted 

bounding boxes, addressing the variability inherent in standard 

NMS.  Experiments demonstrate that the proposed OIoU and 

FQP-NMS, when integrated with YOLOv5, significantly improve 

both mAP and mRO, particularly on challenging 

SliderCAPTCHA datasets.  The incorporation of lightweight 

attention mechanisms, such as ECA, further enhances the model's 

performance and robustness, especially when combined with 

VGG19 and other efficient architectures.  The results indicate that 

the proposed system provides a more accurate and robust solution 

for slider CAPTCHA recognition. 

 

Index Terms—IoU, NMS, Object Detection, Recognition, Slider 

CAPTCHA. 

 

I. INTRODUCTION 

In the realm of online security, slider CAPTCHA as a form 

of CAPTCHA has emerged as a user-friendly alternative to 

traditional methods. By requiring users to slide a puzzle piece 

to a designated gap, this approach not only enhances the user 

experience but also serves as a robust mechanism for 

confirming human identity. Despite its importance, research on 

slider verification remains limited. Recent advancements in 

computer vision, particularly with YOLO (You Only Look 

Once) frameworks, such as YOLOv5, YOLOv6, and YOLOv7, 

have spurred interest in using object detection techniques for 

slider verification [1].  

GitHub projects illustrate a trend of employing YOLO to 

detect and analyze the slider CAPTCHAs. Its capability for 

real-time object detection makes YOLO an attractive option for 

improving the effect of slider puzzles. Improving and 

intensifying research on slider CAPTCHAs is one of the 

essential means for assessing network security and identifying 

vulnerabilities. 

There is a slider puzzle and a corresponding gap with the 

same shape in the slider CAPTCHA, and users may move the 

slider to the gap position accurately [2]. The server judges 

whether the user is a robot according to the moving track and 

the final position of the slider. The process of slider 

CAPTCHAs is shown in Fig. 1. 

 
Fig. 1. Login Process based on the Slider CAPTCHA 

 

Slider CAPTCHA usually adopts three types of security 

mechanisms. The first is to use a very complex background 

whose color is close to the slider puzzle, making it difficult for 

attackers to identify the slider. The second is the design of the 

slider itself, which will put some shadows and fake puzzles to 

confuse the recognizer and make the attacker misjudge. The 

third is trajectory analysis based on machine learning methods. 

The method analyzes many human and machine sliding 

trajectory data and can determine whether it is human behavior, 

not just to consider whether the sliding position makes it more 

difficult for the attacker.  

Some examples of slider CAPTCHAs are shown in Fig. 2. 

Usually, such slider CAPTCHAs have complex backgrounds to 

interfere with the user's judgment on the gap position. The key 

to cracking the slider CAPTCHA is to detect the position of the 

gap, and due to the varying criteria for trajectory recognition 

across different systems, this study focuses exclusively on 
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identifying and localizing the gap within CAPTCHA images. 

 

 
Fig. 2. Some Examples of Slider CAPTCHAs 

 

Nowadays, there are mainly two kinds of research 

frameworks for CAPTCHA recognition: segmentation plus 

recognition and end-to-end recognition without segmentation. 

The former divides a picture into gap and background in the 

pre-processing stage and applies them directly to CAPTCHA 

recognition by designing the network structure. The latter does 

not perform segmentation in the preprocessing stage and 

directly recognizes text or sliders through end-to-end learning. 

The key to slider CAPTCHA detection is accurately locating 

where the gap is located. The category of the gap is relatively 

unimportant, as the sliding CAPTCHA only focuses on whether 

the mouse was moved accurately. Often sliding CAPTCHA is 

cracked using an object detection network, so such a network 

can give an optimal estimate of the target location. This article 

conducts an in-depth investigation into the task of slider 

CAPTCHA recognition and proposes an improved scheme 

based on the YOLOv5 model, offering new perspectives for 

related research on slider CAPTCHAs. 

 

II. RELATED WORKS 

YOLOv5 is an object detection model developed by 

Ultralytics, which builds on the success of its predecessors in 

the YOLO (You Only Look Once) series. It is designed to 

achieve real-time detection speed while maintaining high 

accuracy, which employs a simple and efficient architecture 

that divides the detection pipeline into three two components: a 

backbone and a head. The backbone, typically based on Cross 

Stage Partial Networks (CSPNet), extracts rich feature 

representations from input images. The head using features 

such as Path Aggregation Network (PANet), facilitates multi-

scale feature fusion, enhancing the model's ability to detect 

objects at various sizes, which finally output the head outputs 

the predicted bounding boxes, class probabilities, and 

confidence scores for detected objects. 

A.  Lightweight Attention Mechanisms 

In this study, we aim to enhance the performance of slider 

CAPTCHA recognition by incorporating several lightweight 

attention mechanisms. Efficient Channel Attention (ECA) 

mechanism is a refined method in deep learning that enhances 

convolutional neural networks by improving channel-wise 

feature recalibration without excessive computational cost [3]. 

Unlike traditional methods like Squeeze-and-Excitation 

networks, ECA utilizes a 1D convolution with an optimal 

kernel size to capture local cross-channel interactions 

efficiently, as shown in Fig. 3. This approach maintains 

simplicity and speed, making it ideal for tasks with limited 

computational resources. 

 
Fig. 3. The Structures of ECA 

 

Convolutional Block Attention Module (CBAM) is an 

advanced attention mechanism designed to improve networks, 

which applies both channel and spatial attention modules, 

enhancing feature refinement by focusing on significant regions 

and channels of an input feature map [4]. The channel attention 

module emphasizes meaningful features by leveraging inter-

channel relationships, while the spatial attention module 

highlights important spatial locations. This dual attention 
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strategy ensures a more comprehensive representation, which 

has been shown to improve performance across various 

computer vision tasks such as image classification and object 

detection, as shown in Fig. 4. 

 

 
Fig. 4. The Structures of CBAM 

 

Squeeze-and-Excitation (SE) networks introduce a 

mechanism that adaptively recalibrates channel-wise feature 

responses [5]. The SE block functions by first squeezing the 

global spatial information into a channel descriptor, then excites 

each channel according to its importance. This adaptive process 

enhances the representational power of a network significantly, 

allowing it to focus on informative features more effectively. 

Both SE and ECA are based on channel attention mechanisms; 

however, they differ in their approaches to generating weight. 

SE utilizes a fully connected network to generate weights, while 

ECA employs 1D convolution for weight generation. The 

Lightweight Separable Kernel Attention (LSKA), builds upon 

Visual Attention Networks (VANs) by leveraging separable 

convolution kernels [6]. This allows LSKA to enhance attention 

efficiency by focusing computational resources on pivotal tasks, 

thereby maintaining high performance even with reduced 

computational overhead.  

 

B. Lightweight Backbones 

MobileNet uses Deeply separable convolutions architecture 

to create compact deep neural networks [7]. To efficiently 

balance the delay and precision, it proposes two straightforward 

global hyperparameters. ShuffleNet introduces group 

convolution, which greatly reduces the calculation of the model 

[8]. It shuffles all channels of feature maps belonging to 

different groups evenly. This technology makes the recombined 

group feature map contain one channel in each previous group 

of feature maps, solving the problem of channel communication 

blocking caused by group convolution. ShuffleNetv2 is a highly 

efficient convolutional neural network designed for mobile and 

edge computing [9]. It is characterized by its use of a channel 

shuffle operation that enhances feature combination while 

maintaining low computational cost. The architecture 

incorporates lightweight building blocks, allowing for a 

balanced trade-off between accuracy and efficiency. By 

optimizing the design for various dimensions of performance, 

ShuffleNetv2 achieves superior accuracy with significantly 

fewer parameters compared to its predecessors. 

C. IoU Loss Functions 

The IoU was initially proposed for use in face detection 

within the UnitBox model, whereby a loss function is 

constructed based on the intersection over union of the 

predicted and actual frames [10] , as shown in (1). 

 

𝐼𝑜𝑈 =
|𝑃∩𝐺|

|𝑃∪𝐺|
 (1) 

 

If a positive sample satisfies 𝑃(𝐼𝑜𝑈 = 1) = 1 , the 

corresponding IoU loss function is shown in (2). 

 

𝑙𝐼𝑜𝑈 = 1 − 𝑙𝑜𝑔(𝐼𝑜𝑈) (2) 

 

Assume that the predicted bounding box has the top-left 

corner at the point (𝑥1
𝑝
, 𝑦1

𝑝
) and the bottom-right corner at the 

point (𝑥2
𝑝
, 𝑦2

𝑝
). The Ground Truth (GT) bounding box has the 

top-left corner at the point (𝑥1
𝑔
, 𝑦1

𝑔
) and the bottom-right corner 

at the point (𝑥2
𝑔
, 𝑦2

𝑔
). The IoU algorithm is shown in Fig. 5. 

 

 
Fig. 5. IoU Computing Process 

 

However, when the predicted bounding box and ground truth 

do not intersect, IoU cannot reflect the distance between them. 

In addition, it cannot calculate angle, direction and aspect ratio. 

In this case, the loss function cannot be differentiable and 

optimized. Other improved algorithms are shown in Table I. 

TABLE I . OTHER IOU ALGORITHMS 

IoU Method Description 

GIoU [11] Introduce a penalty when there is no overlap. 

DIoU [12] Add optimization of the distance. 

CIoU [12] Add parameter of aspect ratio. 

EIoU [13] Calculate length and width separately. 

SIoU [14] Add the angle between two boxes. 

 

However, the problem with the IoU loss is that its value is 

always one when there is no overlapping region between the 

two boxes, which is not favorable for gradient propagation. To 

solve this problem, GIoU adds a penalty term to the loss 
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function in the form of a closure consisting of a prediction 

frame and a true frame, as shown in Error! Reference source 

not found.. 

 

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
|𝐶−(𝑃∪𝐺)|

|𝐶|
= 𝐼𝑜𝑈 − 1 −

|𝑈|

|𝐶|
 (3) 

 

According to the definition of the GIoU, if the closure of the 

prediction bounding box P and the real frame G is C, and the 

union of P and G is U and satisfies inequality (4). 

 

𝐺𝐼𝑜𝑈 ≤ 𝐼𝑜𝑈,−1 < 𝐺𝐼𝑜𝑈 ≤ 1 (4) 

 

The GIoU process is just one more closure computation on 

top of the IoU computation, as shown in Fig. 6. 

 
Fig. 6. GIoU Computing Process 

 

Based on the expression of the GIoU, the loss expression and 

its range of values can be obtained, as shown in Error! 

Reference source not found.. 

 

𝑙𝐺𝐼𝑜𝑈 = 1 − 𝐺𝐼𝑜𝑈 = 2 − 𝐼𝑜𝑈 −
|𝑈|

|𝐶|
, 0 ≤ 𝑙𝐺𝐼𝑜𝑈 < 2 (5) 

 

GIoU constructs the gradient of the loss through the closure 

loss term when the prediction box and GT do not overlap. 

However, the disadvantage of closure loss is that even if there 

is no overlap, once the prediction box is enlarged, the closure 

loss can be reduced. A further issue with GIoU is that when the 

prediction box is situated entirely within the GT, the penalty 

associated with GIoU is zero.The difference from GIoU is that 

the goal of DIoU is to directly reduce the distance between the 

center points of two rectangular boxes, as shown in Equation 

(6).  Here, 𝑐𝑃  and 𝑐𝐺  represent the coordinates of the center 

points of the predicted bounding box and the GT, respectively. 

 

𝐷𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
𝜌2(𝑐𝑃 ,𝑐𝐺)

𝑑2
, −1 < 𝐷𝐼𝑜𝑈 ≤ 1 (6) 

 

The symbol ρ represents the Euclidean distance between the 

points. The symbol d represents the distance between the 

diagonals of the closure area of the two bounding boxes, whose 

function is to normalize the distance loss. The loss function of 

DIoU is shown in (7). Given that the DIoU range is from -1 to 

1, the resulting loss range is from 0 to 2. The issue with DIoU 

is that the two boxes have the potential to increase the diagonal 

length of the closure while maintaining the center point distance 

unaltered, which subsequently results in a reduction of the loss. 

 

𝑙𝐷𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑐𝑃,𝑐𝐺)

𝑑2
, 0 ≤ 𝑙𝐷𝐼𝑜𝑈 < 2 (7) 

 

The algorithm of DIoU is illustrated in Error! Reference 

source not found. 7, which requires additional computation of 

the distance between the center points of the predicted and GT 

bounding boxes. 

 

 
Fig. 7. The Process of DIoU 

 

Building upon this, Complete Intersection over Union (CIoU) 

enhances DIoU by further incorporating aspect ratio 

consistency, thus offering a more comprehensive metric 

tailored for precise object localization. Recognizing the 

importance of the aspect ratio in object detection tasks, CIoU 

extends DIoU by introducing a penalty term for aspect ratio 

differences, thereby improving the bounding box regression 

further, as shown in (8). It incorporates three crucial 

components: IoU, central point distance, and aspect ratio 

consistency. α is the trade-off parameter for the aspect ratio 

term, enhancing stability in aspect ratio convergence, as shown 

in (9). The parameter 𝑣  is a measure of the aspect ratio 

discrepancy between the predicted and ground truth boxes, as 

shown in (10). CIoU incorporates an aspect ratio penalty term 

to improve detection accuracy. 

 

𝑙𝐺𝐼𝑜𝑈 = 1 − 𝐺𝐼𝑜𝑈 = 2 − 𝐼𝑜𝑈 −
|𝑈|

|𝐶|
, 0 ≤ 𝑙𝐺𝐼𝑜𝑈 < 2 (8) 
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𝛼 =
𝑣

(1−𝐼𝑜𝑈)+𝑣
 (9) 

 

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔

ℎ𝑔
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑝

ℎ𝑝
)
2

 (10) 

 

To address the issues associated with CIoU, researchers have 

proposed EIoU Loss, which separates the aspect ratio from 

CIoU. The penalty term of EIoU is derived from the penalty 

terms of CIoU by individually calculating the length and width 

of both the ground truth box and the predicted box. This loss 

function comprises three components: overlapping loss, center 

distance loss, and width-height loss. The first two components 

follow the methods used in CIoU, while the width-height loss 

directly minimizes the difference between the widths and 

heights of the ground truth and predicted boxes, resulting in a 

faster convergence rate, as shown in Error! Reference source 

not found.. Here, 𝑤𝑐 and ℎ𝑐 represent the width and height of 

the closure, respectively. 

 

 

(11) 

 

The algorithms of CIoU and EIoU are illustrated in Fig. 8 and 

Fig. 9, respectively. 

 

 
Fig. 8. The Process of CIoU 

 

Currently, there is limited dedicated research on slider 

CAPTCHA recognition. The only notable study found so far is 

by Danni Wu et al., published in 2000, which used a YOLOv3-

based model to recognize CAPTCHAs [15]. 

 

III. METHODOLOGY 

Fig. 10 and Fig.11 display samples chosen from Geetest 

(https://universe.roboflow.com/project-lnr1p/geetest-wqsht) 

and SliderCAPTCHA (https://universe.roboflow.com/captcha-

lwpyk/slide_captcha), respectively. It is obvious that 

SliderCAPTCHA exhibits greater diversity in both background 

and color variations, making it recognition more challenging to 

recognition. 

 

 
Fig. 9. The Process of E IoU 

 

 
Fig. 10. Samples of Geetest Dataset 

 

For object detection, mAP is an indicator used to evaluate 

accuracy, measuring how many targets are correctly identified. 

However, for slider CAPTCHA tasks, it is more crucial to 

assess whether the horizontal offset position of the target gap is 

accurately recognized. Therefore, mAP cannot fully reflect the 

precision of the recognition position. Based on these reasons, a 

new evaluation metric was proposed called mean Relative 

Offset (mRO), as shown in (12). 
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Fig. 11. Samples of SliderCAPTCHA Dataset 

 

 

𝑚𝑅𝑂 = ∑
|𝑥1
𝑡𝑖−𝑥1

𝑝𝑖|

𝑥2
𝑡𝑖−𝑥1

𝑡𝑖𝑖=1→𝑛  (12) 

 

Among them, 𝑥1  and 𝑥2  represent the x-coordinates of the 

top-left corner and the bottom-right corner, respectively. The 

subscripts  𝑝𝑖   and 𝑡𝑖represent the 𝑖th predicted bounding and 

the corresponding GT boxes, respectively. 

A.  Offset-based IoU Loss Functions 

This section introduces Offset-based IoU (OIoU), a novel 

metric explicitly designed to cater to the distinct requirements 

of slider CAPTCHA tasks, with a focus on horizontal 

displacement accuracy over traditional overlap-centric 

approaches. The conventional IoU metric is widely used in 

object detection tasks due to its simplicity and effectiveness in 

measuring the overlap between predicted and ground truth 

bounding boxes. IoU calculates the ratio of the area of overlap 

to the area of union of two bounding boxes, providing a 

straightforward metric for object detection performance. 

GIoU extends IoU by incorporating the distance between the 

smallest enclosing box and the union of the boxes, thus 

addressing localization errors to some extent. DIoU further 

improves this by considering the central point distance between 

the bounding boxes, enhancing convergence speed in model 

training. Similarly, CIoU attempts to integrate aspect ratio 

considerations. Despite its advantages, IoU and its derivatives, 

such as GIoU, DIoU, and CIoU, have inherent limitations when 

applied to sliding CAPTCHA tasks. These metrics emphasize 

the overlap and central alignment of boxes, which are not 

critical for sliding CAPTCHAs. In slider tasks, the primary 

objective is accurately determining the horizontal displacement 

of the slider bar to match the target location. Traditional IoU-

based metrics, which prioritize maximizing overlap and 

consider vertical alignment, become less relevant. 

To overcome these limitations, this work proposes OIoU, a 

metric specifically designed for slider CAPTCHA tasks where 

the horizontal accuracy of displacement is paramount. The 

OIoU derived from IoU focuses on the precise calculation of 

horizontal offsets while disregarding vertical misalignment. 

The OIoU involves quantifying the horizontal displacement 

error between the predicted bounding boxes and the GT. This is 

achieved by calculating the squared difference between the x-

coordinates of the predicted box and GT. Here, we propose four 

approaches. The first approach involves directly using the 

difference in the x-coordinates of the top-left corners of the 

predicted box and the ground truth box as a penalty term, as 

shown in (13). 

 

𝑂𝐼𝑜𝑈1 = 𝐼𝑜𝑈 − (𝑥1
𝑝
− 𝑥1

𝑡)
2
, −1 < 𝑂𝐼𝑜𝑈1 ≤ 1 (13) 

 

The advantage of this algorithm lies in its direct calculation 

of the offset, making it simple and efficient. However, the 

drawback is that it lacks normalization. The second approach 

draws inspiration from EIoU by incorporating the normalized 

center point distance, which also accelerates the model's 

convergence, as illustrated in (14). 

 

𝑂𝐼𝑜𝑈2 = 𝐼𝑜𝑈 − (𝑥1
𝑝
− 𝑥1

𝑡)
2
−

𝜌2(𝑐𝑃,𝑐𝐺)

𝑑𝑐
2 ∈ (−2,1 (14) 

 

In the third approach, we normalize the offset penalty term 

using the width of the ground truth box, as illustrated in (15). 

 

𝑂𝐼𝑜𝑈3 = 𝐼𝑜𝑈 −
(𝑥1

𝑝
−𝑥1

𝑡)
2

𝑤𝑔
2 ∈ (−1,1 (15) 

 

The fourth approach employs the width of the bounding box 

enclosing both the predicted box and the GT to normalize the 

offset error, as illustrated in (16). 

 

𝑂𝐼𝑜𝑈4 = 𝐼𝑜𝑈 −
(𝑥1

𝑝
−𝑥1

𝑡)
2

𝑤𝑐
2 ∈ (−1,1] (16) 

 

By designing and comparing four different penalty terms, we 

can identify the most suitable OIoU configurations for various 

datasets. 

B. Fixed Quantity prediction-based NMS 

Due to the fixed number of targets in the slider CAPTCHA 

recognition task, the standard NMS in YOLOv5 cannot 

guarantee the output of a fixed number of predicted bounding 

boxes. To address this issue, we propose the Fixed Quantity 

Prediction-based Non-Maximum Suppression (FQP-NMS), 

which addresses the issue of variable numbers of prediction 

boxes resulting from standard NMS by ensuring a fixed output 

of prediction boxes, as shown in Fig. 12. 

Initially, the algorithm takes the predicted bounding boxes 

with associated confidence scores and a predefined confidence 

threshold 𝑐𝑜𝑛𝑓. The target is to maintain exactly 𝑀prediction 

boxes as the output, which is a hyperparameter. The process 

begins with an empty list 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 to store the final boxes 

and initializes 𝐾𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  to 0 to keep track of previously 

processed boxes, and 𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡  to 0 for the number of candidate 

boxes in the current iteration. All 𝑁 predicted boxes are sorted 

based on their confidence scores in descending order. 
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Depending on whether 𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is non-zero, the algorithm 

selects the top 𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡  boxes. Otherwise, it applies the 

confidence threshold to obtain an initial 𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , ensuring it is 

at least 𝑀  by selecting the top 𝑀  boxes if necessary. The 

standard NMS is applied on the newly selected (𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡 −
𝐾𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) candidate boxes. The algorithm then calculates 𝐶 , 

representing the combined number of boxes after NMS and 

those already in 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 . If 𝐶  reaches or exceeds 𝑀 , it 

sorts the list by confidence and outputs the top 𝑀 boxes. If not, 

it updates 𝐾𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  to 𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , appends the current boxes to 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 , and adjusts 𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡  by adding ( 𝐶 −𝑀 ), 

repeating the process from candidate selection with the updated 

𝐾𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . Through this iterative adjustment based on initial 

confidence filtering and subsequent NMS, the algorithm 

ensures that the output number of prediction boxes remains 

fixed at 𝑀 , making it optimal for applications requiring a 

constant number of bounding boxes. 

 

 
Fig. 12. Dataset The Algorithm of FQP-NMS 

 

The essence of FQP-NMS is to produce a fixed number of 

predictions by continuously adjusting the number of candidate 

boxes, which is effectively equivalent to dynamically 

modifying the preset confidence threshold to regulate the 

output. In the original YOLOv5, the confidence threshold is 

generally determined based on the optimal F1 Score or is set 

manually. Therefore, FQP-NMS can be regarded as a Non-

Maximum Suppression mechanism based on a dynamic 

confidence threshold. 

C. F Integrating lightweight Attentions and Backbones 

In this section, a lightweight attention mechanism will be 

introduced into YOLOv5 to enhance YOLOv5n. The SE, ECA, 

CBAM, and LSKA modules will be integrated into the initial 

layers of the head. 

 

 
Fig. 13. Integrating CBAM, ECA, and SE into YOLOv5n 

Fig. 13 illustrates the schematic diagram of CBAM, ECA, 

and SE attention mechanisms being added into YOLOv5. Since 

the three output heads of YOLOv5, P3, P4, and P5 correspond 

to layers L17, L20, and L23, each attention mechanism only 

needs to be integrated after the respective C3 module at these 

three layers. In the proposed improvements, for each of the 

three attention mechanisms, in addition to being added 

individually to each position, they will also be simultaneously 

integrated into all three positions. 

Fig. 14 shows that VGG, MobileNetV3, and ShuffleNetV3 

are utilized to replace the backbone of YOLOv5n. The outputs 

of specific feature layers from each of the three lightweight 

networks were aligned with the feature sizes specified for P3 

(80×80), P4 (40×40), and P5 (20×20). It should be noted that 

MobileNet and ShuffleNet employ Grouped Convolution 

(GConv), Depthwise Separable Convolution (DWConv), and 

channel shuffle techniques. Since MobileNet and ShuffleNet 

have already undergone special processing and optimization of 

their channels, the incorporation of attention mechanisms may 

not yield ideal results. Further analysis will be provided in the 

subsequent results discussion. 

 

 
Fig. 14. Integrating Lightweight Backbones into YOLOv5n 

IV. RESULTS AND DISCUSSION 

The results of the proposed methods are analyzed in this 

section, by comparison with baseline and benchmark methods. 
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A. Analysis of OIoU  

Table II presents validation results that compare the proposed 

OIoU metrics with CIoU, DIoU, EIoU, GIoU, and SIoU, on the 

SliderCAPTCHA dataset. Performance is assessed using mAP 

and mRO at an IoU threshold of 0.5. Importantly, lower mRO 

values indicate better performance, reflecting a smaller 

deviation between predicted and GT bounding boxes. Among 

the traditional IoU metrics, DIoU yields the highest mAP at 

0.960; however, it has a relatively high mRO of 1.86%. In 

contrast, CIoU, EIoU, GIoU, and SIoU achieve mAP values 

from 0.942, to 0.955, respectively, with correspondingly higher 

mROs ranging from 1.72% to 1.80%. In comparison, the OIoU 

metrics demonstrate enhanced performance, particularly in 

terms of reducing mRO. OIoU1, which incorporates a penalty 

based on the L2 distance between the top-left corners of the 

predicted and GT boxes, achieves a mAP of 0.954 with a 

significantly lower mRO of 1.32%. The OIoU2 adds a 

normalized center distance based on OIoU1, leading to a slight 

improvement in both performance metrics. The main difference 

between OIoU3 and OIoU1 lies in the normalization of offset 

using GT width. This adjustment resulted in an increase in mAP 

to 0.975; however, mRO, increased to 1.39%. In comparison to 

OIoU3, OIoU4 normalizes using the diagonal length of the 

bounding box, which resulted in a degradation of both mAP and 

mRO. This may be attributed to the inherent contradiction 

between the diagonal length and these metrics, where an 

increase in one often leads to a decrease in the other. Compared 

to traditional IoU, OIoU demonstrates improvements in both 

metrics, with a particularly significant increase observed in 

mRO. 

TABLE II VALIDATION RESULTS WITH DIFFERENT IOUS ON 

SLIDERCAPTCHA 

Type mAP@0.5 mRO@0.5 

YOLOv5n + CIoU 0.942 1.77% 

YOLOv5n + DIoU 0.96 1.86% 

YOLOv5n + EIoU 0.955 1.72% 

YOLOv5n + GIoU 0.944 1.80% 

YOLOv5n + SIoU 0.95 1.72% 

YOLOv5n + OIoU1 0.954 1.32% 

YOLOv5n + OIoU2 0.958 1.28% 

YOLOv5n + OIoU3 0.975 1.39% 

YOLOv5n + OIoU4 0.97 1.43% 

 

Table III displays the test results of different IoU metrics on 

the Geetest dataset. It is observed that the majority of IoU 

metrics outperform their counterparts tested on the 

SliderCAPTCHA, indicating that Geetest is relatively easier for 

recognition tasks. Furthermore, the three OIoU variations 

generally perform better than traditional IoU on the Geetest 

dataset. Notably, both performance metrics of OIoU2 are lower 

than those of OIoU1, suggesting that the normalized center 

distance may be counterproductive for directly optimizing 

mRO on simpler datasets. The mRO for IoU3 is the same as that 

of OIoU1, indicating that whether offset normalization is 

applied has little impact on mRO in simpler datasets; however, 

it does benefit mAP, a trend also confirmed by results on the 

SliderCAPTCHA dataset. Finally, OIoU4's with still perform 

poorly due to the conflicting optimization paths. 

Table IV illustrates the performance on the SliderCAPTCHA 

dataset after applying L1 distance and Focal-OIoU. The table 

indicates that all four OIoU losses experience a decline in 

performance with L1 distance. This decline may be due to the 

slower convergence speed of L1 distance compared to L2 

distance and its lesser stability in high-dimensional spaces. 

Focal-OIoU is designed to further optimize predictions with 

higher IoU while minimizing the impact of predictions with 

lower IoU. As a result, the table shows an overall increase in 

mAP with the use of Focal, while mRO decreases. 

TABLE III VALIDATION RESULTS WITH DIFFERENT IOUS ON 

GEETEST 

Type mAP@0.5 mRO@0.5 

YOLOv5n + CIoU 0.993 1.41% 

YOLOv5n + DIoU 0.983 1.41% 

YOLOv5n + EIoU 0.994 1.40% 

YOLOv5n + GIoU 0.988 1.29% 

YOLOv5n + SIoU 0.99 1.46% 

YOLOv5n + OIoU1 0.985 1.27% 

YOLOv5n + OIoU2 0.978 1.38% 

YOLOv5n + OIoU3 0.993 1.27% 

YOLOv5n + OIoU4 0.984 1.62% 

TABLE IV VALIDATION RESULTS WITH L1 DISTANCE AND FOCAL-
OIOUS ON SLIDERCAPTCHA 

Type mAP@0.5 mRO@0.5 

YOLOv5n + OIoU1 0.954 1.32% 

YOLOv5n + OIoU1 (L1) 0.957 1.46% 

YOLOv5n + Focal-OIoU1 0.967 1.33% 

YOLOv5n + OIoU2 0.958 1.28% 

YOLOv5n + OIoU2 (L1) 0.943 1.29% 

YOLOv5n + Focal-OIoU2 0.919 1.53% 

YOLOv5n + OIoU3 0.975 1.39% 

YOLOv5n + OIoU3 (L1) 0.953 1.64% 

YOLOv5n + Focal-OIoU3 0.919 1.75% 

YOLOv5n + OIoU4 0.97 1.43% 

YOLOv5n + OIoU4 (L1) 0.957 1.57% 

YOLOv5n + Focal-OIoU4 0.967 1.44% 

 

The performance on Geetest is generally consistent with that 

on SliderCAPTCHA, except for OIoU4, as shown in Table V. 

L2 distance outperforms L1 distance for most OIoU metrics, 

and while Focal-OIoU enhances mAP, it concurrently leads to 

a decline in mRO performance. In summary, based on the 

previous experimental analyses, using L2 distance in OIoU 

(without focal loss) demonstrates superior overall performance, 
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particularly in the mRO metric. Among the metrics, OIoU1 and 

OIoU2 exhibit the best performance; however, OIoU2 involves 

additional computation due to the normalization of the center 

distance. Therefore, OIoU1 offers a favorable balance between 

performance and computational efficiency. 

 

TABLE V VALIDATION RESULTS WITH L1 DISTANCE AND FOCAL-
OIOUS ON GEETEST 

Type mAP@0.5 mRO@0.5 

YOLOv5n + OIoU1 0.985 1.27% 

YOLOv5n + OIoU1 (L1) 0.977 1.36% 

YOLOv5n + Focal-OIoU1 0.987 1.45% 

YOLOv5n + OIoU2 0.978 1.38% 

YOLOv5n + OIoU2 (L1) 0.99 1.33% 

YOLOv5n + Focal-OIoU2 0.986 1.36% 

YOLOv5n + OIoU3 0.993 1.27% 

YOLOv5n + OIoU3 (L1) 0.984 1.38% 

YOLOv5n + Focal-OIoU3 0.994 1.51% 

YOLOv5n + OIoU4 0.984 1.62% 

YOLOv5n + OIoU4 (L1) 0.991 1.31% 

YOLOv5n + Focal-OIoU4 0.993 1.35% 

 

B. Analysis of FQP-NMS  

Table VI presents the validation results of the proposed FQP-

NMS method in conjunction with OIoU1 to OIoU4 on the 

SliderCAPTCHA. The performance metrics are measured 

using mAP and mRO. FQP-NMS is a novel approach designed 

to maintain a consistent number of predicted bounding boxes 

during the detection process, which is crucial for slider 

CAPTCHA tasks where typically only one valid output exists. 

Traditional NMS can yield a variable number of prediction 

boxes, leading to scenarios with too few or no predictions. By 

ensuring a fixed number of predictions, FQP-NMS effectively 

addresses this variability. The results indicate that integrating 

FQP-NMS with the OIoU algorithms generally improves 

performance across both mAP and mRO metrics. reaffirming 

that improvements in precision coincide with lower relative 

offset values, signifying more accurate predictions. 

TABLE VI VALIDATION RESULTS WITH FQP-NMS ON 

SLIDERCAPTCHA 

Type mAP@0.5 mRO@0.5 

YOLOv5n + OIoU1 0.954 1.32% 

YOLOv5n + OIoU1 + FQP-NMS 0.97 1.29% 

YOLOv5n + OIoU2 0.958 1.28% 

YOLOv5n + OIoU2 + FQP-NMS 0.972 1.25% 

YOLOv5n + OIoU3 0.975 1.39% 

YOLOv5n + OIoU3 + FQP-NMS 0.99 1.38% 

YOLOv5n + OIoU4 0.97 1.43% 

YOLOv5n + OIoU4 + FQP-NMS 0.981 1.32% 

 

Overall, the results underscore the efficacy of FQP-NMS in 

stabilizing prediction counts while enhancing overall 

performance in slider CAPTCHA detection. The combination 

of FQP-NMS with OIoU not only demonstrates significant 

improvements in mAP but also ensures that the mRO remains 

low, emphasizing the suitability for tasks with specific 

detection requirements, such as sliding CAPTCHAs. 

TABLE VII VALIDATION RESULTS WITH FQP-NMS ON GEETEST 

Type mAP@0.5 mRO@0.5 

YOLOv5n + OIoU1 0.985 1.27% 

YOLOv5n + OIoU1 + FQP-NMS 0.994 1.25% 

YOLOv5n + OIoU2 0.978 1.38% 

YOLOv5n + OIoU2 + FQP-NMS 0.987 1.32% 

YOLOv5n + OIoU3 0.993 1.27% 

YOLOv5n + OIoU3 + FQP-NMS 0.995 1.24% 

YOLOv5n + OIoU4 0.984 1.62% 

YOLOv5n + OIoU4 + FQP-NMS 0.991 1.55% 

 

Table VII illustrates the performance of FQP-NMS on the 

Geetest dataset. Like the results on the SliderCAPTCHA 

dataset, OIoU1, OIoU2, OIoU3, and OIoU4 all show 

improvements in both mAP and mRO, further demonstrating 

the exceptional performance and robustness of FQP-NMS 

across different datasets. In summary, FQP-NMS is particularly 

well-suited for detection tasks where the number of objects in 

the images is relatively fixed. 

 

C. Analysis of Lightweight Attentions on SliderCAPTCHA 

TABLE VIII VALIDATION RESULTS WITH DIFFERENT 

ATTENTIONS ON SLIDERCAPTCHA 

Type Layer mAP@0.5 mRO@0.5 

YOLOv5n (Baseline) \ 0.942 1.77% 

Baseline + CBAM +24 0.904 2.41% 

Baseline + CBAM +21 0.97 1.60% 

Baseline + CBAM +18 0.96 1.62% 

Baseline + CBAM +18,22,26 0.957 1.95% 

Baseline + ECA +24 0.976 1.49% 

Baseline + ECA +21 0.967 1.75% 

Baseline + ECA +18 0.973 1.6% 

Baseline + ECA +18,22,26 0.944 1.59% 

Baseline + SE +24 0.945 1.73% 

Baseline + SE +21 0.954 1.48% 

Baseline + SE +18 0.959 1.85% 

Baseline + SE +18,22,26 0.858 2.36% 

Baseline + C3-LSKA =17,20,23 0.927 2.05% 

Baseline + C3-LSKA =13,17,20,23 0.963 1.84% 

 

In Table VIII, it is observed that integrating CBAM into L21 
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and L18 of YOLOv5n results in performance improvements, 

while other placements show a decline, leading to an overall 

modest enhancement. This may be because attention 

mechanisms added to the deeper layers of the network focus 

more on global perspectives rather than local bounding boxes, 

thus showing limited effectiveness. Unlike CBAM, SE employs 

only channel attention and uses fully connected networks to 

generate channel weights, like CBAM, but it achieves a more 

noticeable improvement in mRO. ECA also utilizes channel 

attention; however, all four integration methods enhance both 

mAP and mRO. Unlike SE, which uses fully connected layers 

to generate weights, ECA employs 1D convolution, considering 

only the influence of adjacent channels, which improves the 

model’s generalization ability. Additionally, the use of C3-

LSKA results in decreased performance, further proving that 

spatial attention, especially with large receptive fields, is less 

effective for tasks like slider CAPTCHA recognition. 

TABLE IX VALIDATION RESULTS WITH DIFFERENT 

ARCHITECTURES ON GEETEST 

Type Layer mAP@0.5 mRO@0.5 

YOLOv5n (Baseline) \ 0.993 1.41% 

Baseline + CBAM +24 0.993 1.40% 

Baseline + CBAM +21 0.984 1.69% 

Baseline + CBAM +18 0.984 1.64% 

Baseline + CBAM +18,22,26 0.989 1.49% 

Baseline + ECA +24 0.99 1.41% 

Baseline + ECA +21 0.986 1.71% 

Baseline + ECA +18 0.985 1.38% 

Baseline + ECA +18,22,26 0.994 1.56% 

Baseline + SE +24 0.983 1.56% 

Baseline + SE +21 0.993 1.44% 

Baseline + SE +18 0.994 1.50% 

Baseline + SE +18,22,26 0.991 1.62% 

Baseline + C3-LSKA =17,20,23 0.982 1.61% 

Baseline + C3-LSKA =13,17,20,23 0.994 1.61% 

 

Table IX displays the results on the Geetest dataset, 

indicating that all attention mechanisms, except for ECA (+18) 

and ECA (+24), experience a decline in mRO. This suggests 

that adding attention mechanisms in the head of the network is 

not effective in reducing offset errors for simpler datasets. 

Combining the results from both datasets, it is observed that the 

ECA attention mechanism demonstrates relatively better 

robustness, with ECA (+24) exhibiting the most stable 

performance. 

The validation results on SliderCAPTCHA presented in 

Table X highlight the performance of various architectures on 

the SliderCAPTCHA dataset, with mAP and mRO indicating 

the effectiveness of different combinations of models and 

attention mechanisms. The notable performance enhancements 

observed with VGG19, YOLOv5n (baseline), and YOLOv3 

(benchmark) when combined with ECA can be attributed to 

these architectures' robustness and their ability to leverage the 

enhanced feature extraction capabilities provided by ECA. The 

integration of ECA allows these models to assign different 

weights to various channels, thereby improving sensitivity to 

critical features that contribute to accurate object detection. 

Consequently, this results in higher mAP values and lower 

mRO values, indicating better alignment with ground truth. In 

contrast, the performance of MobileNetV3 and ShuffleNetV2 

diminishes when ECA is applied. This may be due to the 

inherent design philosophy of these architectures, which 

prioritize efficiency and are optimized for lightweight 

applications. The addition of ECA to these models could 

introduce complexity that undermines the benefits of enhanced 

feature extraction, especially where computational constraints 

are crucial. Additionally, MobileNetV3 and ShuffleNetV2 

already incorporate their own attention mechanisms optimized 

for resource efficiency, and adding ECA might disrupt their 

balanced architecture, leading to poorer performance. 

TABLE X VALIDATION RESULTS WITH THE BENCHMARK ON 

SLIDERCAPTCHA 

Type Layer mAP@0.5 mRO@0.5 

YOLOv5n (Baseline) \ 0.942 1.77% 

Baseline + ECA + OIoU1 + 

FQP-NMS 
+24 0.978 1.18% 

Baseline + VGG19 + OIoU1 + 
FQP-NMS 

\ 0.992 0.97% 

Baseline + VGG19 + ECA + 

OIoU1 + FQP-NMS 
+35 0.994 0.88% 

Baseline + ShuffleNetV2 + 
OIoU1 + FQP-NMS 

\ 0.995 1.08% 

Baseline + ShuffleNetV2 + 

ECA + OIoU1 + FQP-NMS 
 0.988 1.32% 

Baseline + MobileNetV3 + 
OIoU1 + FQP-NMS 

\ 0.987 1.43% 

Baseline + MobileNetV3 + 

ECA + OIoU1 + FQP-NMS 
 0.963 1.55% 

YOLOv3 (Benchmark) \ 0.995 1.09% 

Benchmark + OIoU1 + FQP-
NMS 

\ 0.995 0.93% 

 

In conclusion, the combination of Baseline + VGG19 + ECA 

+ OIoU1 + FQP-NMS achieves the best performance, followed 

closely by YOLOv3 + OIoU1 + FQP-NMS. The Baseline + 

ShuffleNetV2 + OIoU1 + FQP-NMS also demonstrates 

commendable performance, confirming that the right 

combinations of architectures and attention mechanisms can 

significantly enhance detection capabilities on the 

SliderCAPTCHA dataset. 

The validation results on Geetest datasets consistently reveal 

the effectiveness of specific model combinations, as shown in 

Table XI. Combining the performance results from both the 

SliderCAPTCHA and Geetest datasets, we can conclude that 

the configuration of Baseline + VGG19 + ECA + OIoU1 + 

FQP-NMS consistently delivers the best performance, 

achieving high mAP and low mRO in both scenarios. Following 

this, the YOLOv3 model paired with OIoU1, and FQP-NMS 

also demonstrates strong results, highlighting its effectiveness 

in object detection tasks. Additionally, the Baseline + 
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ShuffleNetV2 + OIoU1 + FQP-NMS configuration shows 

commendable performance, affirming its capability as a viable 

alternative. 

TABLE XI VALIDATION RESULTS WITH THE BENCHMARK ON 

GEETEST 

Type Layer mAP@0.5 mRO@0.5 

YOLOv5n (Baseline) \ 0.993 1.41% 

Baseline + ECA + OIoU1 + FQP-

NMS 
+24 0.988 1.20% 

Baseline + VGG19 + OIoU1 + 

FQP-NMS 
\ 0.995 0.92% 

Baseline + VGG19 + ECA + OIoU1 

+ FQP-NMS 
+35 0.995 0.93% 

Baseline + ShuffleNetV2 + OIoU1 

+ FQP-NMS 
\ 0.995 1.08% 

Baseline + ShuffleNetV2 + ECA + 

OIoU1 + FQP-NMS 
+18 0.995 1.17% 

Baseline + MobileNetV3 + OIoU1 

+ FQP-NMS 
\ 0.995 1.18% 

Baseline + MobileNetV3 + ECA + 
OIoU1 + FQP-NMS 

+18 0.995 1.19% 

YOLOv3 (Benchmark) \ 0.945 1.27% 

Benchmark + OIoU1 + FQP-NMS +35 0.995 0.92% 

 

TABLE XII PARAMS AND GFLOPS WITH DIFFERENT MODELS 

Type Layer PARAMs GFLOPs 

YOLOv5n (Baseline) \ 1760518 4.1 

Baseline + CBAM +24 1826408 4.2 

Baseline + CBAM +21 1777128 4.1 

Baseline + CBAM +18 1764776 4.1 

Baseline + CBAM +18,22,26 1847276 4.2 

Baseline + ECA +24 1760521 4.1 

Baseline + ECA +21 1760521 4.1 

Baseline + ECA +18 1760521 4.1 

Baseline + ECA +18,22,26 1760527 4.1 

Baseline + SE +24 1793286 4.2 

Baseline + SE +21 1768710 4.1 

Baseline + SE +18 1762566 4.1 

Baseline + SE =18,22,26 1803526 4.2 

Baseline + C3-LSKA =17,20,23 1515078 3.9 

Baseline + C3-LSKA =13,17,20,23 1503686 3.8 

Baseline + VGG19 + ECA \ 1805769 20.3 

YOLOv5n (Baseline) + ECA +24 1760521 4.1 

Baseline + ShuffleNetV2 \ 1855554 3.8 

Baseline + MobileNetV3 \ 2092342 3.0 

YOLOv3 (Benchmark) \ 61497430 154.5 

 

Table XII presents the PARAMs and computational 

complexity in terms of GFLOPs for various architectures. 

Compared to other attention mechanisms, the ECA mechanism 

demonstrates the smallest parameter count and computational 

complexity. Notably, while YOLOv3 demonstrates superior 

performance, it significantly surpasses YOLOv5 in both 

parameter count and computational complexity, with 

approximately 35 times more parameters and 37 times greater 

GFLOPs. The configuration of Baseline + VGG19 + ECA 

achieves the best performance among the models assessed, with 

a parameter count and computational complexity that are 

considerably lower than those of YOLOv3. However, it still 

exhibits roughly five times the GFLOPs of YOLOv5, indicating 

a higher computational burden. In contrast, Baseline + 

ShuffleNetV2 and Baseline + ECA combinations offer good 

performance while maintaining a lower parameter count and 

computational complexity. These models demonstrate that it is 

possible to achieve relatively high accuracy while keeping the 

resource requirements manageable, making them suitable for 

deployment in resource-constrained environments. Overall, this 

analysis highlights the trade-offs between model performance, 

complexity, and efficiency across different architectures. 

Fig. 15 presents the visualization results of YOLOv5 

combined with the ShuffleNet backbone on the 

SliderCAPTCHA dataset. Despite the complex background and 

the presence of gap artifacts that can interfere with detection, 

the model demonstrates excellent overall performance in 

accurately identifying the relevant elements. This indicates that 

the model can maintain high accuracy and reliability despite the 

complexities introduced by the background.  

 

 
Fig. 15. Visualization Results of YOLOv5n with the ShuffleNet 

on the SliderCAPTCHA 

 

Fig. 16 displays the visualization results of the same model 

on the Geetest dataset. Despite the images in the Geetest dataset 

primarily being grayscale with low contrast, the model 

effectively identifies the position of the gaps, demonstrating a 

high level of detection accuracy. This showcases the robustness 

of the YOLOv5n along with the lightweight ShuffleNet 

backbone in slider detection in challenging visual conditions. 
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Fig. 16. Visualization Results of YOLOv5n with the ShuffleNet 

on the Geetest 

 

V. CONCLUSIONS 

This study focuses on the recognition of slider CAPTCHAs 

and introduces a more suitable evaluation metric, namely mRO. 

Additionally, a novel offset-based IoU and a Non-Maximum 

Suppression (NMS) mechanism are proposed, and both 

algorithms significantly enhance the mRO of all evaluated 

models. Furthermore, the YOLOv5n model is optimized by 

incorporating lightweight attention mechanisms and enhancing 

the backbone network. Experimental results demonstrate that 

the implementation of the proposed algorithms effectively 

reduces deviations in slider CAPTCHA recognition, providing 

new insights and references for further CAPTCHA research. 
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