
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH                                           https://doi.org/10.24191/jeesr.v26i1.004

                                 

 

27 

 

Abstract—Maintaining and optimising photovoltaic (PV) systems 

requires accurate segmentation and detection of thermal hotspots 

in solar panels. This study present a novel multiclass semantic 

segmentation approach based on a U-Net deep learning model to 

help solar panel and hotspot analysis. Utilising the U-Net 

architecture, solar panels, hotspots, and background components 

can be classified with high fidelity. A large dataset of thermal 

images with multiple class labels was rigorously trained and 

evaluated on the model. The U-Net model also achieved a very 

impressive overall accuracy of 97.96% and an average 

Intersection over Union (IoU) of 0.7246 on all classes. In 

particular, it recorded an IoU score of 0.9485 for background, 

0.9677 for the solar panels, and 0.2578 for the hotspots. The model 

does well at separating background from solar panels, but lower 

IoU for hotspots suggests that defining areas with solar panels is 

more challenging, as they are smaller and less obvious. The results 

show how the U-Net model increases the fault detection accuracy 

in PV systems by accurately segmenting the components of the 

solar panel and the hotspots. Insights from these studies will lead 

to improved maintenance practices that can increase the 

operational lifespan of solar installations. By doing so, this study 

highlights the potential of deep learning models, particularly U-

Net, to facilitate solar panel analysis and ultimately contribute to 

more reliable and sustainable energy production through the 

automation of monitoring and maintenance in solar power plants, 

with scalability and efficiency. 

 
Index Terms—Solar Panel, Semantic Segmentation, Hotspot 

Recognition, U-Net, Deep learning.  

I. INTRODUCTION 

As renewable energy becomes progressively demanded 

worldwide, solar power is becoming a necessary technology in 

the transition to a sustainable energy system. Solar energy  

 

generation is a foundation of the PV panels and therefore needs 

monitoring and maintenance on a continuous basis [1][2]. Early 

detection of defects, such as thermal hotspots, is a major 

challenge in managing PV systems [3][4]. Manual inspections 

and simple thermal imaging are both labour-intensive, time-

consuming, and error-prone and are unsuitable for dependable 

monitoring. 

Solar panel maintenance is important because it is essential 

to maintain the maximum performance and life of a solar energy 

system. Maximising energy production requires regular 

upkeep, as dust, debris, and environmental pollutants can 

severely reduce a panel’s efficiency. In this context, one 

specific challenge is the development of thermal hotspots, 

where certain parts of a solar panel get too hot because of bad 

connections or defects inside the cells [5][6]. If left unattended, 

these hotspots can cause a loss of energy output and even 

permanent damage to the panels. 

New opportunities in the automatic analysis of solar panel 

images have become available through recent advancements in 

machine learning and computer vision. Semantic segmentation 

is one of many ways to do detailed image analysis, in which 

each pixel in an image is classified into a set of pre-defined 

categories [7]. There have been many architectural designs for 

such purposes, but the U-Net model has become popular as it 

can generate high-resolution segmentation even when trained 

on a small dataset. 

This study is centred on advancing the segmentation of solar 

panels and enhancing the detection of thermal hotspots through 

a U-Net-based multiclass semantic segmentation framework. 

The segmentation task encompasses three distinct categories: 

background, solar panels, and hotspots. Unlike binary 

segmentation approaches, this multiclass method enables 

simultaneous analysis of these critical components within a 

single image, providing a clear distinction among the classes. 

Achieving high performance hinges on the model’s ability to 

accurately identify and localise hotspots within the complex 

structure of solar panels and to effectively separate the panels 

from their surroundings. 

This research leverages the capabilities of the U-Net 

architecture to produce insights from a dataset of thermal 

images collected from operational solar PV systems. The 

primary goal is to develop a model that not only distinguishes 

solar panels from their background but also accurately detects 

hotspots that may signal potential faults or inefficiencies. This 
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integrated approach aims to support the automatic monitoring 

and maintenance of solar power installations. 

The study’s contributions are threefold. First, it introduces an 

innovative application of the U-Net model for multiclass 

semantic segmentation within the context of solar energy 

analysis. Second, it demonstrates how this approach enhances 

hotspot detection accuracy, benefiting PV system management. 

Lastly, it provides a thorough assessment of the model’s 

performance, including its practical implications for real-world 

applications. 

The structure of this paper is as follows: Section 2 reviews 

prior work on solar panel segmentation and hotspot detection. 

Section 3 details the methodology, including the dataset, model 

architecture, and training procedures. Section 4 presents and 

discusses the experimental results. Section 5 concludes the 

paper and suggests directions for future research. 

II. REVIEW OF RELATED WORKS IN SOLAR PV SEGMENTATION 

AND HOTSPOT DETECTION 

In recent years, the analysis of solar panels, particularly in 

segmentation and defect detection, has intensified alongside the 

rapid expansion of PV system installations. This section 

provides an overview of recent advancements in solar panel 

segmentation and hotspot detection, spanning from traditional 

image processing techniques to cutting-edge deep learning 

methods. 

The classical image processing techniques, such as 

thresholding, edge detection, and morphological operations, 

were used in early efforts in solar panel segmentation. For 

example, A. Shaik et al. [8] used a combination of edge 

detection and region growing to segment solar panels from 

aerial images. Though these methods were successful in 

controlled environments, performance on variable lighting, 

shadows, and complex backgrounds was hampered by the 

resulting poor quality of segmentation results. 

Since the arrival of deep learning, convolutional neural 

networks (CNNs) [9] have become the standard technique to 

perform image segmentation tasks, including the segmentation 

of solar panels. The recent studies showed that CNN-based 

models outperform the traditional techniques, especially in the 

case of solar panel images that have complex patterns and 

textures. U-Net [10] is a leading architecture for semantic 

segmentation among these models, largely due to its distinctive 

structure, which localises features across diverse scales. 

According to M. Arif Wani et al. [11], for instance, a deep 

learning model was used to segment solar panels in satellite 

imagery with greater accuracy than conventional methods. J. 

Camilo et al. [12] had also applied a CNN architecture to 

perform pixel-wise classification of PV panels from high-

resolution images and shown that the model generalises well 

across different solar PV array aerial imagery datasets. 

Efficiency and longevity of solar panels are directly related 

to the successful identification of hotspots in PV systems. 

Historically, hotspot detection was a result of thermal imaging 

coupled with manual inspection [13][14]. These methods were 

useful, but they were often time-consuming and depended 

heavily on the operator's expertise. Additionally, human error 

is common in manual inspection of large-scale solar farms. 

Recently, hotspots have been automatically detected using 

machine learning techniques. First, feature extraction methods 

combined with early machine learning models (e.g., support 

vector machines (SVM), random forest) were used to make the 

initial approaches. As an example, R. O. Serfa Juan et al. [15] 

developed a way to classify normal and defective solar cells 

based on the electroluminescence (EL) imaging coupled with 

some digital image processing techniques and an SVM-based 

classifier. Nevertheless, these approaches required extensive 

feature engineering, and the quality of the extracted features 

was not always optimal. 

Hotspot detection in the PV systems has been greatly helped 

by the advent of deep learning, specifically CNNs. CNNs allow 

us to learn hierarchical features without manual feature 

extraction and automatically from raw image data. For 

example, M. Vlaminck et al. [16] proposed a CNN-based 

method for anomaly detection of PV power plants from aerial 

imagery that outperforms other machine learning approaches in 

terms of both accuracy and robustness. 

Recent research has since focused on pixel-level hotspot 

detection using fully convolutional networks (FCNs) [17] and 

U-Net architectures [10]. To segment hotspots in thermal 

images, Y. Shen et al. [18] used a modified U-Net model that 

results in state-of-the-art accuracy and precise localization. 

Indeed, this method was particularly successful for detecting 

small, scattered hotspots that are difficult to discern using 

standard approaches. 

Similar to this, X. Hao et al. [19] proposed a U-Net-based 

model for multi-objective semantic segmentation, an approach 

that makes feature recognition more efficient in large and 

complex datasets such as unmanned aerial vehicle (UAV) 

remote sensing in construction zones. They showed that the 

model performs well for intricate segmentation across multiple 

classes. This body of work serves as inspiration for the current 

work that extends U-Net application to solar panel analysis, for 

simultaneous segmentation of solar panels, hotspots, and 

background elements in a single framework. 

In contrast to previous research that employed separate deep 

learning models such as You Only Look Once (YOLO) [20], 

Single Shot MultiBox Detector (SSD) [21] or others for object 

detection and segmentation tasks separately, this study 

improves segmentation accuracy by performing thermal 

hotspot detection within the same U-Net architecture. To 

simplify the process and to reduce computational demands and 

time, the proposed unified U-Net model simplifies the process 

by eliminating the need for multiple models. This is a major 

leap forward for the field, enabling more efficient monitoring 

and maintenance of solar energy systems. Furthermore, 

although existing models have successfully addressed the 

problem of solar panel segmentation and hotspot detection 

separately, this work bridges the gap between these two by 

combining them through multiclass semantic segmentation. 

III. METHODOLOGY 

In this section, the methodology for developing and 

evaluating the U-Net-based multiclass semantic segmentation 
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model for solar panel segmentation and hotspot detection is 

described. The methodology is structured into several essential 

components: This includes dataset preparation, model 

architecture, training procedures, and performance evaluation 

metrics. Fig. 1 illustrates a visual representation of the 

framework for the semantic segmentation approach, comprised 

of the segmentation of solar PV panels and hotspot recognition. 

 
Fig. 1. The methodology framework for semantic segmentation 

tasks to segment PV panels and recognition of hotspots. 

A. Data Collection and Preparation 

In this study, thermal images from active PV systems are 

used in a dataset. Thermal cameras mounted on drones and 

ground-based platforms were used to image large PV 

installations from a 15-meter height, yielding complete 

coverage. Data acquisition occurred under a variety of 

environmental conditions, mainly during sunny periods with 

irradiance of 508 W/m², including recording thermal patterns in 

both standard and defective panel operation. 

Furthermore, images from PV farms in Kelantan, Malaysia, 

were sourced with different panel types and configurations to 

increase dataset diversity. This collection effort was 

comprehensive, producing over 670 annotated thermal images, 

each painstakingly annotated to identify areas of interest for 

multiclass semantic segmentation. 

The dataset classifies each image into three categories: solar 

panel, background, and hotspot. After preprocessing the images 

and labels, they were used to train the U-Net model. To solve 

this challenging segmentation task, precise boundary 

distinctions were made for the solar panel and hotspots, 

accounting for the complex shapes and variable sizes of 

hotspots while maximising segmentation accuracy. 

Data augmentation techniques were used to improve the 

robustness and the generalisation capability of the models. 

Images were randomly transformed, which included rotations, 

flips, scaling, and cropping. It is notable that this augmentation 

process was especially important for increasing the number of 

hotspot instances, which are generally sparse and exhibit major 

variability in size and shape. 

B. Implemented Model Architecture and Training 

Configuration 

The U-Net architecture [10] is the core of this study’s 

methodology, which is a fully convolutional network that can 

generate pixel-level segmentations. This model was selected 

due to its ability to represent both broad contextual information 

and fine image details, which is well suited to the multiclass 

segmentation tasks that address in this study. 

The U-Net architecture is composed of contracting (encoder) 

paths and expanding (decoder) paths. On the contracting path, 

convolutional and max pooling layers are used, reducing spatial 

dimensions and increasing feature depth at the same time. On 

the other hand, the expanding path gradually upsamples these 

feature maps and merges with high-resolution features from the 

contracting path via skip connections so that the network retains 

critical spatial information at all levels [10]. 

 
Fig. 2. The implemented U-Net model architecture. 

 

The basic U-Net design used in this work was modified to fit 

our particular use case, as illustrated in Fig. 2: 

 

1) Input layer 

The input to the model was thermal images of size 512×512 

pixels. These images were resized from their original 

dimensions of 312×234 to this input size. 
 

2) Encoder 

It had five convolutional blocks with two convolutions 

followed by pooling. In the first block, there are 16 filters, 

which double at each block from there. 
 

3) Bottleneck layer 

The bottleneck layer at the centre of the U-Net receives the 

most abstracted features before they are unsampled. 
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4) Decoder 

The encoder and decoder match: each upsampling is 

concatenated with the corresponding encoder feature map 

followed by two convolutional layers. This structure allows 

the model to reconstruct the spatial resolution without 

losing the features learnt. 
 

5) Output layer 

The final layer employs a softmax activation function to 

generate a pixel-wise classification, assigning each pixel to 

one of three categories: solar panel, background, or hotspot. 
 

Model training was conducted on a high-performance 

computing setup equipped with an NVIDIA GeForce RTX 

3050 GPU (4GB memory) and 16GB RAM. It was developed 

based on TensorFlow 2.4.0 and Keras 2.4.3. Hyperparameters 

used for training the U-Net model for semantic segmentation 

are given in Table I. In the case of the class imbalance of the 

hotspot dataset, hotspots are rare and small; therefore, a 

weighted categorical cross-entropy loss function was used. To 

increase the sensitivity of the model to the hotspot class, higher 

weights were given to those regions that are critical. Adam 

Optimiser was used for training using an initial learning rate of 

0.001 and a decay learning rate schedule to reduce the rate to 

prevent overfitting and allow stable convergence. 

 
 

Model performance was optimised through the training 

process structured in stages. The dataset was split into three 

subsets: 80% for training, 10% for validation, and 10% for 

testing. By separating it into two parts, it could efficiently 

evaluate the model on unseen data and still generalise well. 

Although GPU memory limits permitted a batch size of 1, the 

model was trained for over 100 epochs with early stopping on 

validation loss to prevent overfitting. For training, real-time 

data augmentation was used to make the model more resilient 

to input data variation, and input images were normalised to the 

[0, 1] range. 

C. Evaluation Metrics 

Several metrics used in standard segmentation tasks were 

used to evaluate the performance of the model. 

 

1) Pixel Accuracy (PA) 

PA is the proportion of correctly classified pixels (true 

positives and true negatives) total. It is a general 

representation of how good the model does in all classes but 

could be deceptive in case of class imbalance imbalance 

[10][18]. 

 

𝑃𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

 

Where; 

TP: True Positives (correctly predicted positive pixels) 

TN: True Negatives (correctly predicted negative pixels) 

FP: False Positives (incorrectly predicted positive pixels) 

FN: False Negatives (incorrectly predicted negative pixels) 

 

2) Intersection over Union (IoU) 

Overlap between the predicted and ground truth segments 

was computed for each class using IoU [10][18]. This 

metric is very good for evaluating how well the model can 

recognise and localise some classes, like hotspots. 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(2) 

 

Where; 

TP: True Positives (pixels accurately identified as 

belonging to the target class) 

FP: False Positives (pixels mistakenly classified as 

belonging to the target class) 

FN: False Negatives (pixels that are part of the target class 

but were not identified as such) 

 

3) Mean Intersection over Union (mIoU) 

Mean IoU is the average of IoU values across all classes. It 

provides a full measure of the model performance over all 

classes [10][18]. When we want to look at a multiclass 

segmentation task, the mIoU is useful because it provides a 

performance on all classes, including less frequent or 

smaller classes such as hotspots. 

 

𝑚𝐼𝑜𝑈 =
1

𝑁
∑𝐼𝑜𝑈𝑖

𝑁

𝑖=1

 

(3) 

 

Where; 

N: The total number of classes 

𝐼𝑜𝑈𝑖: IoU for class i 

IV. RESULTS AND DISCUSSION 

In this study, a comprehensive evaluation of the training 

dynamics and performance metrics of the U-Net model [10] for 

multiclass segmentation of thermal images in solar PV systems 

is presented. The study analyses the observed training process 

to show how the model is precise in distinguishing different 

classes and how it can learn and make changes to predictions 

over time. Finally, these evaluations show that the model is 

generalisable to unseen data, specifically its ability to find 

critical areas, such as hotspots. 

The loss curve is shown in Fig. 3 for training and validation 

TABLE I . HYPERPARAMETER TUNING OF TRAINING MODEL 

Hyperparameter/ 
Configuration 

Descriptions 

Input image size [512, 512] 

No. of classes Class 1: Background 

Class 2: PV Panel 

Class 3: Hotspot 

Optimizer Adaptive Moment Estimation (Adam) 

Learning rate 0.001 

No. of epochs 100 

Batch size 1 

Loss function Categorical cross-entropy 

Data splitting 80% (Training); 10% (Validation); 10% (Testing) 
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over 100 epochs. The model has to struggle to learn the 

underlying patterns in the data, so the initial losses are both 

high. Yet it can see a steep drop in loss values after the first 10 

epochs, indicating the model is quickly learning and adapting 

to the key features. 

 
Fig. 3. Training and validation loss curves during a 100-epoch 

training period for U-Net 

 

The training loss goes steadily down and eventually plateaus 

at something close to zero, which means that the model has 

minimised the error on the training set. The validation loss is 

initially decreasing with the training loss and then starts 

levelling off at around 20 epochs and staying consistent above 

the training loss. In other words, while the model keeps getting 

better and better on the training data, its performance on unseen 

validation data isn’t changing anymore. 

In the later stages, this gap between training and validation 

losses indicates mild overfitting. In spite of the prediction being 

good on the training set, it is not very good on the validation 

set. However, since the losses are not too far apart, overfitting 

is very low. The validation loss has already stabilised over the 

past few epochs and will probably not change much more with 

even a few more epochs, so it can be considered that the model 

converged. 

 
Fig. 4. Training and validation accuracy curves during a 100-

epoch training period for U-Net 

 

The Fig. 4, which shows training and validation accuracy 

over 100 epochs. The accuracy begins low (around 60%) very 

early in training as the model struggles to accurately classify the 

dataset’s classes. Accuracy increases very fast during training, 

in the sense that the model is able to classify most of the data 

after the first 10 epochs of training. Their effective early 

learning and parameter adjustments are responsible for this 

sharp increase. 

After this initial improvement, accuracy for both training and 

validation stabilises between 95% and 98%, with a minimum of 

about 20 epochs. The training and validation accuracy curves 

are close enough through training that the model seems to 

generalise well to new data without a lot of overfittings. 

By the end of training, accuracy stops increasing past a value 

with very little variation, and this means that the model has 

reached a plateau. The consistently high accuracy across the 

two sets demonstrates the model’s strong ability to classify 

different classes, including the classically challenging task of 

hotspot detection. Indeed, this stability and high performance 

ensure the robustness and reliability of the model. 

Figure 5 illustrates a qualitative assessment of the U-Net 

model’s performance in segmenting thermal images of solar PV 

panels into three classes: hotspot (red), PV panel (green), and 

 

 

 

 

Fig. 5. The qualitative outcomes of the semantic segmentation 

predictions are class 1, background (blue), class 2, PV panels 

(green), and class 3, hotspots (red) using the U-Net architecture. 
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background (blue). A normalized thermal visualisation of the 

PV panel was generated for clearer interpretation. The leftmost 

image shows the original test image; the centre image presents 

the ground truth annotations, where each area is manually 

labelled—green for the PV panel, blue for background, and red 

for hotspots. The final image displays the U-Net model’s 

segmented output, where each pixel is independently classified 

into one of the three specified categories. 

Comparison of the ground truth and predicted segmentation 

shows that the model accurately captured the main regions of 

interest: PV panels and background. The predicted green and 

blue regions align closely with those in the ground truth, 

reflecting the model’s strong capability in distinguishing PV 

panels from their surroundings. 

For hotspot detection, the model successfully identified the 

hotspot region, though slight differences in shape and size 

compared to the ground truth can be observed. These minor 

discrepancies are likely due to the challenge of accurately 

detecting small and subtle hotspot features in thermal images. 

Nonetheless, the U-Net model effectively highlights these 

critical regions and captures essential features with high 

accuracy. 

 Overall, these findings confirm that U-Net is well-suited for 

multiclass thermal image segmentation of PV panels, 

effectively separating background, PV panels, and hotspots 

with minimal errors. 

Table II summarises the quantitative performance of the U-

Net model in segmenting the background, solar panel, and 

hotspot areas and highlights its strengths and areas for 

improvement in the segmentation accuracy. Overall, this study 

achieves a mean IoU of 0.7246 across all classes, which is a 

good result. The higher it is, the more the model’s predictions 

overlapped with ground truth, the better it’s performing. 

The model attains high IoU scores of 0.9485 and 0.9677 for 

background (Class 1) and PV panels (Class 2), respectively, 

having high accuracy in segmenting those regions with close to 

perfect overlap to the ground truth. 

Nevertheless, the IoU for hotspots (Class 3) is notably lower 

at 0.2578, which suggests that the precise identification of these 

tiny and subtle aspects in the thermal images is challenging. The 

lower score in this case is due to the difficulty to precisely detect 

and segment hotspots, which are often faint and small. 

However, the model achieves an overall accuracy of 97.96% 

and a good pixel classification in the entire image. This high 

accuracy indicates that the model reliably classifies between 

background and PV panel regions and hence demonstrates 

general robustness to thermal image segmentation. 

In order to contextualise these results, the model's 

performance was compared with other state-of-the-art methods 

in the field. For instance, L. Zhuang et al. [22] show that when 

used for solar panel segmentation, advanced deep learning 

methods can improve IoU scores by 34% through the use of 

their proposed cross-learning-driven U-Net method, which 

performs well on a range of datasets and typically results in an 

average IoU score of 74.017% (compared to the 40.017% 

benchmark). Furthermore, they showed robust performance on 

different datasets, achieving around 62% overall segmentation 

IoU. These models are very good at segmenting larger areas, 

such as solar panels, and that matches what this study found. In 

contrast, although the proposed model achieves background 

and solar panel segmentation performance as good as these 

leading methods, it has large gaps in hotspot detection. 

Furthermore, state-of-the-art models such as pyramid scene 

parsing network (PSPNet) [23] have been able to achieve 

competitive results in a number of segmentation tasks, but at 

the expense of demanding large annotated datasets, and hotspot 

detection is not incorporated in the same framework. 

In this domain, the U-Net model achieves effective 

segmentation of large areas, including the background, solar 

panel regions and can recognise hotspot regions as well. 

Qualitative and quantitative evaluations confirm that the model 

correctly identifies these primary classes, suggesting the model 

as a potential reliable tool for automated solar panel 

segmentation on thermal images. 

But the model struggles to pick up on smaller hotspots and 

segment them, which are crucial to identifying possible faults 

or inefficiencies in solar panels. It can recognise these regions 

but with low precision, especially with small and complex 

features. The inherent limitation in accurately segmenting 

minor regions out of a complex thermal image is pointed out. 

While the model has overall strong general performance for 

classifying most of the pixels, the lower precision in hotspot 

detection indicates that there is a trade-off between overall 

accuracy and class specific performance. This implies that 

further refinement is necessary to make the model more 

effective in distinguishing between less frequent but important 

features. 

This raises several areas for future research improvement. 

This large performance gap between segmenting hotspots 

shows that either additional strategies are required to improve 

the detection capabilities for small, subtle features or that more 

effort is needed to improve the performance of these methods. 

In addition, the high overall accuracy bears out the utility of the 

model on larger segments but makes one wonder to what extent 

the model can perform well on all classes under varying 

conditions. These limitations will be crucial for developing 

more effective monitoring and maintenance strategies for solar 

energy systems that allow better fault detection and better 

operational efficiency. 

This study points to a first major limitation of the model in 

terms of its ability to properly segment hotspots. The low IoU 

of this class implies that the current U-Net configuration might 

not be optimal for the detection of small or less distinctive 

regions in thermal images. The reduced performance is also 

likely due to class imbalance in the dataset, as the number of 

TABLE II . PERFORMANCE EVALUATION RESULTS FOR SEMANTIC 

SEGMENTATION OF MULTICLASS USING U-NET 

No. of classes IoU mIoU PA 

Class 1: Background 0.9485 

0.7246 97.96% Class 2: PV Panel 0.9677 

Class 3: Hotspot 0.2578 
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background and solar panel regions is substantially higher than 

hotspots. 

Future automated solar panel inspection using thermal 

imagery could include dataset augmentation, architectural 

change, and more advanced techniques. Such enhancements 

would be pivotal in developing more reliable and more effective 

systems for real-world applications. 

V. CONCLUSION 

In conclusion, this work shows that the U-Net deep learning 

model has great potential for effective multiclass semantic 

segmentation of solar panels and for hotspot detection. The 

effectiveness of the model in segmenting the solar panels and 

background regions suggests that the model is able to handle 

the complexity of the imagery from a PV system. Despite 

continued challenges with the smaller, less frequent hotspot 

class, results suggest that the proposed approach represents a 

promising means to improve the precision and consistency of 

fault detection in PV systems. The results highlight that deep 

learning models like U-Net can be beneficially applied to the 

real time monitoring and maintenance of PV systems through 

segmentation and analysis processes that lead to more proactive 

and efficient maintenance strategies. That in turn might prolong 

the operational life of solar installations and encourage 

sustainable energy production. In addition, the study points out 

further improvements in the area of hotspot detection. The 

relatively lower IoU for hotspots indicates that a refinement of 

the model is needed to better manage these critical but difficult 

features. Further work can be done to include other data 

sources, for example, multispectral imaging or advanced data 

augmentation, to handle class imbalance. Moreover, other gains 

in segmentation accuracy and robustness may be achieved by 

evaluating alternative deep learning architectures or ensemble 

methods. The U-Net model has performed well for solar panel 

segmentation and hotspot recognition, but more work is needed 

to overcome existing limitations and fully exploit deep learning 

for the renewable energy space. 
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