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Abstract—Chronic kidney disease (CKD) is a global health crisis, 

responsible for approximately 60% of worldwide deaths. With a 

projected increase in CKD patients on dialysis exceeding 2 million 

by 2030, there is an urgent need for improved diagnostic methods. 

Current procedures, such as laborious and time-consuming blood 

tests, fail to differentiate between drug-resistant phases of CKD. 

This paper aims to explore the potential of Artificial Intelligence 

(AI) tools, specifically machine learning (ML), in revolutionizing 

CKD diagnosis. This work intends to enlighten the evolution of 

ML techniques in CKD diagnosis and their contemporary 

applications. We conducted an extensive literature review, 

identifying 70 papers pertaining to ML-based CKD diagnostic 

tools recently published. These papers were thoroughly examined 

to categorize the diverse AI methods utilized in medical 

diagnostics, particularly those aimed at CKD detection. The 

review identified a range of AI methods used in CKD diagnosis, 

signifying substantial progress in this domain over the last decade. 

These methods show promise in addressing the challenges 

associated with early CKD detection. This paper highlights the 

evolving landscape of ML applications in CKD diagnosis and their 

current relevance. This paper concludes with a discussion of 

prospects for future research on AI-based CKD diagnostic 

systems, including deep learning algorithms applied to an 

assortment of open problems and challenges. 

 
Index Terms—Chronic Kidney Disease, Blood, Urine, Multiple 

Imputations, Machine Learning 

I. INTRODUCTION 

Explorations of artificial intelligence (AI) techniques to 

manage and predict [1] the condition of chronic disease patients 

have been published by a lot of researchers since 2012. The 

development of an intelligent diagnosis model for a concerning 

disease worldwide has great potential to improve chronic 

disease care [2]. However, most of the research works at that 

moment focused on personalising health trend patents [3], smart 

monitoring [4], and disease control [5] for critical issues of 

health care such as heart disease [6] and diabetes [7]. 

The term AI refers to the ability of a computer, robot, or 

another machine to do any human-like capabilities and 

intelligence [8]. The advancement of these methods has been 

divided into different subs of techniques such as machine 

learning [9], neural networks [10], and deep learning [11]. AI 

has gone through evolution by developing a hybrid prediction 

model [12], which combines several machine learning 

techniques to improve accuracy and efficiency. 

Realising the promise and necessity of AI for medical 

applications, especially critical sickness, has boosted the 

demand for intelligence prediction models. Implementing this 

intelligent approach does not only focus on chronic disease but 

is widely used on other high-risk diseases such as cancer [13], 

cardiovascular [14], and diabetes mellitus [15] at an early stage. 

Developing an intelligent prediction model with the 

utilisation of machine learning helps doctors provide more 

patient intervention alternatives. Early identification of chronic 

disease allows doctors to provide successful treatment. Thus, it 

will prolong critical organs' function and reduce the risk of 

death [16]. 

Chronic kidney disease (CKD) is one of the most serious 

medical issues worldwide. According to World Health 

Organisation (WHO) records, the mortality rates of these 

chronic diseases have grown faster in recent years. CKD has 

become among the top causes of death with at least 2.4 million 

cases reported annually [17]. For that reason, prediction models 

using AI classifiers have been studied for a decade by many 

researchers. 

Theoretically, CKD is defined as kidney damage or a 

glomerular filtration rate of less than 60ml/min/1.73m2 for 

more than three months [18]. Several causes of CKD include 

loss of blood flow to the kidney, urinary infection, high blood 

pressure, and diabetes [19]. Heart disease, dehydration, and 

liver failure cause blood flow loss. Prostate, colon, and cervical 

malignancies would cause CKD due to urination problems. 

On the other hand, diabetes and high blood pressure 

contribute to two-thirds of CKD cases [20]. Excessive sugar 

consumption can lead to kidney damage, causing an increase in 

the kidney's filtration function to remove waste and excess fluid 

from the bloodstream [21]. One of the initial indicators of CKD 

is the presence of a protein called albumin in the urine. In a 

healthy kidney, albumin should not pass from the blood into the 

urine [22]. CKD is typically categorized into five stages, with 

the most severe being end-stage renal disease, which 

necessitates kidney replacement therapy [23]. 

The prevalence of CKD has been on the rise over the past 
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decade, as highlighted in the 24th Report of the Malaysian 

Dialysis and Transplant Registry in 2016. This report indicated 

that 14 percent of women and 12 percent of men were affected 

by the disease [24,25]. Meanwhile, over 850 million people 

worldwide have CKD, acute kidney damage, or are receiving 

renal replacement treatment, according to the American Society 

of Nephrology. This amount increases the total number of 

people with diabetes by 100 percent. In addition, the association 

projected that CKD would rank among the top five global 

killers [26]. 

Therefore, this paper reviews CKD diagnostic tools based on 

machine learning (ML). The rest of this paper is organized as 

follows. The common ML terminology and artificial 

intelligence process in medical diagnosis are presented in this 

section. The next section discusses related works on ML-

applied methods for CKD diagnostic systems. Then, challenges 

in CKD prediction using ML are presented. Next, the way 

forward in CKD prediction would be proposed whereas the 

final section concludes this paper. 

II. MACHINE LEARNING IN DISEASE DIAGNOSIS 

This section presents common ML terminology, the basic 

type of AI sub-field, and the medical diagnosis process using 

ML approaches. 

2.1 Commonly Used ML Terminology 

Artificial Neural Network (ANN) is the most popular ML 

technique used for intelligent diagnostics. There are eight 

components commonly applied in ANN terminology: neuron; 

input, output, and hidden nodes layer; weights; threshold value; 

training classifier; and learning parameters. 

ANN consists of the main building block called neuron. It 

contains three major layers; input, hidden nodes and output for 

receiving information performing a complex mathematical 

operation and classifying the data points [27]. It is inspired by 

the human brain, where all the mathematical operation in this 

method is likely a brain that performs a particular task [28]. 

Therefore, to perform computing diagnostics similar to the 

human brain, data needs to be multiplied by the ‘weights’ in 

each layer. Value weights can be considered as the strength of 

the connection between two neurons [29]. The threshold value 

of neuron output can be determined as 0 or 1. If the class’s data 

is more than two, the threshold value will be considered 1 until 

the nth data class. Thus, it is the parameter of neurons and must 

be determined as an integer. 

The ANN terminology also includes training a neural 

network to reduce the error of intelligent diagnostic models 

[28]. The value of weight in the training phase is based on the 

number of inputs implemented in the model [30]. Another ANN 

terminology is learning to evaluate the changes in its input or 

output. All processes in the learning phase depend on the 

number of parameters. 

Generally, a patient will meet a doctor and undergo a 

urinalysis, as well as a blood test. Patients will be diagnosed at 

critical stages – stages 3, 4 and 5, where at these stages, the 

kidney condition can no longer be saved. Therefore, it is very 

important to monitor health conditions twice a year to make 

sure that the kidney functions well. 

2.2 Basic Types of ML 

There are three types of neural networks for ML techniques 

which is single-layered feed-forward, multi-layered feed-

forward, and recurrent neural network. Both single and multi-

layered feed-forward neural network consists of input and 

output layers, however, it is not reversible. 

The difference between these two neural networks lies in the 

hidden layer or hidden neurons. Multi-layered neural networks 

can consist of more than one hidden neuron that works by 

linking external input with other neurons in the network. For 

example, the output of the second layer becomes the input for 

the third layer, and it continues until the output layer. 

2.3 Medical Diagnosis Process Using ML 

The ML approach gives new abilities to perform diagnosis 

without using human judgment. This technique consists of 

seven major steps, which are data collection, data preparation, 

selection, training and model evaluation, parameter tuning, as 

well as predictions. 

Data collection and preparation are the first two important 

processes for the overall performance of the prediction model. 

Each process aims to gather and clean raw data into useful data. 

Then, ML will select, train, and evaluate the prediction model. 

Selection is key to proposing a task-appropriate algorithm. 

The model must then be trained to improve forecast accuracy. 

In the evaluation step, model output is compared to input 

parameters. 

Finally, parameter tuning includes training iterations, 

performance, outcome, learning rate, beginning values, and 

distribution. The model must be evaluated with the actual 

dataset to make sure that the prediction outcome matches the 

domain expert. The overall steps of ML are shown in Figure 1. 

 

III. POTENTIAL MACHINE LEARNING OR DEEP LEARNING 

METHOD FOR CKD 

This section discusses the findings of several research groups 

on the proposed classifier for the CKD prediction model. This 

section also examines the issue of missing data and solutions 

proposed by researchers to increase the model's accuracy. 

3.1 Existing Method for CKD Diagnostic 

Several tests and experiments have been employed for CKD 

prediction, such as image processing from ultrasound, capturing 

disease trends using a signal, missing and imbalanced data, 

feature selection and a comparison of effectiveness between 

various classifiers. Although each of the studies obtains high 

accuracy for several classifiers, there is a major drawback to 

identifying CKD and non-CKD. In addition, this identification 

requires a great deal of time for result interpretation and a 

complicated method to execute. The primary CKD diagnostic 

tests and procedures are detailed in Table 1. 
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Fig. 1. Machine Learning System 

 

Current prediction techniques, such as ultrasonography and 

signal waves, perform accurate diagnostic results and are non-

invasive, but the cost of clinical tests is expensive. Each 

medical data needs to go through the pre-processing phase 

before training the model with various classifiers due to missing 

data and imbalanced classes. This has spawned a vast area of 

research for the creation of better, faster, and more effective 

diagnostic instruments and methodologies to achieve greater 

sensitivity and specificity, as well as to control the disease and 

minimise mortality rates. Consequently, the desire to identify 

new and improved ways has led to the development of ML. 

 

TABLE 1. MAIN SHORTCOMINGS OF CKD DIAGNOSTIC AND PREDICTION TESTS.  

Test Methodology Interpretations Shortcomings References 

Kidney condition based 
on ultrasound image. 

Imaging processing techniques and ML 
approach for the diagnosis of different 

CKD stages. 

Diagnosis through non-invasive 
ultrasonographic imaging techniques. 

Expensive [11] 

Diagnose CKD using 
four classifier model. 

Applied Correlation Based attribute 
selection (CBAS) method and Fuzzy 

Rough Set Based attribute selection 

(FRSBAS) method. 

Predict CKD using four ML classifiers 
k-Nearest Neighbour, naïve Bayes, 

Random Forest and Logistic 

Regression. 

Need to apply 
different feature 

selections. 

[31] 

Handling missing data 

for CKD dataset. 

Applied features selection and imputation 

method using K-neighbouring algorithm. 

Perform CKD prediction using 

Random Forest and Decision Tree 

classifier. 

Both classifiers 

perform 87% of 

accuracy. 

[32] 

Design CKD prediction 

model on imbalance 

dataset. 

Proposed sampling method Synthetic 

Minority Oversampling (SMOTE) and 

Randomly Under Sampling (RUS) to 
solve the class imbalance. 

Applied Linear Regression, SVM, 

Multi-Layer Perceptron and K-NN for 

the classifier. 

Complexity and time-

consuming. 

[33] 

Capture the long-term 

trends in the CKD data, 
while effectively 

handling the noise in 

the signal. 

Proposed the Time-Aware Long Short-

Term Memory (LSTM) for CKD 
prediction. 

Extracted from two larger clinical 

datasets: DARTNet and MIMIC-III 
dataset. 

Expensive and 

limited to stage 3 
patients. 

[34] 

Feature selection of 

CKD attributes 

Approach Ant Lion Optimization (ALO) 

technique to choose optimal features for 

the classification process. 

Utilising DNN method as a classifier 

for the prediction model. 

Low number of 

attributes in the 

prediction model. 

[35] 

Compare the efficiency 

of different classifiers. 

Applied various ML algorithms to 

predict the CKD and analysed their 

efficiency. 

Proposed KNN, Decision Tree, ANN 

and SVM as the classifier. 

Non-specific 

classifier. 
[36] 

 

3.2 Prediction using Machine Learning Approach 

Previous research in the field of CKD prediction models has 

primarily concentrated on detecting the disease and its different 

stages using various diagnostic approaches. CKD prediction 

often relies on two key clinical tests: urine tests and blood tests. 

Urinalysis involves three fundamental steps: visual inspection, 

chemical analysis, and microscopic examination. Albuminuria 

[37], specific gravity [38], protein, and glucose are among the 

urinalysis parameters. Several clinical blood tests for kidney 

diseases include fasting blood sugar, urea, serum creatinine, 

serum sodium, and potassium lab tests.  

Both urinalysis and blood tests play a crucial role in assessing 

kidney function as all their parameters are interrelated and 

contribute to the determination of kidney health. For instance, 

the measurement of urea assesses the nitrogen content in the 

blood [35]. Elevated urea levels indicate that the kidneys are 

unable to efficiently eliminate urea from the bloodstream. 

ML techniques enhance these tests by enabling the 

generalization of attributes across both individuals with normal 
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kidney function and those with CKD [39]. Efforts have already 

been made to model clinical traits at different stages of the 

disease [40]. Well-established ML methods for this purpose 

encompass convolutional neural networks [41], support vector 

machines [42], decision tree classifiers [43], and artificial 

neural networks (ANN) [44]. 

3.3 CKD Prediction using ANN 

Previous research in the field of CKD prediction models has 

primarily concentrated on detecting the disease and its different 

stages using various diagnostic approaches. CKD prediction 

often relies on two key clinical tests: urine tests and blood tests. 

Urinalysis involves three fundamental steps: visual inspection, 

chemical analysis, and microscopic examination. Albuminuria 

[37], specific gravity [38], protein, and glucose are among the 

urinalysis parameters. Several clinical blood tests for kidney 

diseases include fasting blood sugar, urea, serum creatinine, 

serum sodium, and potassium lab tests.  

Both urinalysis and blood tests play a crucial role in assessing 

kidney function as all their parameters are interrelated and 

contribute to the determination of kidney health. For instance, 

the measurement of urea assesses the nitrogen content in the 

blood [35]. Elevated urea levels indicate that the kidneys are 

unable to efficiently eliminate urea from the bloodstream. 

One of the most well-known ML approaches is ANN. This 

method learns from examples and mimics the biological 

workings of neurons in the brain. Despite being one of the first 

AI paradigms, it is still significant due to its capacity to 

generalise a problem's solution [45]. Modelling of 

physiological phenomena such as cognitive development [46], 

dengue prediction [47], and cardiovascular issues [48], has been 

frequently used with this approach. ANN has also been 

employed in CKD investigations in the past. 

Despite the expanding quantity of studies on applying AI to 

predict CKD, the following gaps have been discovered: 1) 

Numerous testing methods have been investigated in the 

literature to attain specific qualities. However, there has been a 

lack of emphasis on prioritizing the selection of convenient and 

cost-effective attributes while simultaneously maintaining 

prediction accuracy and reliability; 2) In the realm of CKD 

studies, a significant portion of research addressing missing 

data and unbalanced datasets has predominantly relied on 

rudimentary strategies like attribute elimination and 

correlation-based processes to identify relevant parameters. In 

contrast, methods such as multiple imputations play a pivotal 

role in accurately generating credible data points; 3) Previous 

research on CKD employing Artificial Neural Networks (ANN) 

has encountered issues related to ineffective reporting of 

findings. This was primarily attributed to insufficient technical 

details regarding both data pre-processing and model 

development, thereby casting doubt on the credibility of the 

results. Figure 2 illustrates a flowchart used to determine the 

optimal number of hidden nodes. 

In this paper, MATLAB is employed for modelling tasks. 

Generally, an Artificial Neural Network (ANN) comprises an 

input layer, multiple hidden layers, and an output layer [49]. 

Nevertheless, previous research [50] has revealed that a 

network with just one hidden layer can accurately approximate 

any function. The number of input nodes is determined by the 

number of network attributes, while this paper employs a single 

output node. The optimal number of hidden nodes is ascertained 

through a distinct set of optimization experiments, which take 

into account the network's unique training characteristics [51]. 

Subsequently, the error is utilized in the back-propagation 

weight-update process, incorporating appropriate learning 

techniques. Levenberg-Marquardt algorithm is used in this 

research. Iterative network training would continue until the 

error is reduced to a minimum [52]. The data is first 

randomised. Afterwards, 70 percent is utilised for training, 15 

percent for validation, and 15 percent is used for testing. The 

validation set serves the purpose of preventing the network 

from overfitting. Occasionally, data from the validation set is 

incorporated during training to evaluate the network's ability to 

generalize. If the validation error surpasses a certain threshold, 

the training process is stopped, and the previous set of network 

weights is adopted for the final structure. Subsequently, the 

model's performance is assessed using the testing set [53]. 

Two distinct models are developed using Artificial Neural 

Networks (ANN): one incorporating urine-based attributes with 

a five-input structure, and the other incorporating blood-based 

attributes with a nine-input structure. The determination of the 

number of hidden nodes, however, follows a rule-of-thumb 

experiment. The lower limit is set to 2/3 of the combined size 

of the input and output layers, while the upper limit is chosen 

to be less than twice the size of the input layer [54]. The 

experimentation process begins by training the ANN for 40 

iterations using the lower limit configuration and then 

averaging the results. This process is iterated until the 

maximum limit is reached, as depicted in Figure 2. 

Table 2 shows the CKD prediction model's performance 

using several ML and hybrid classifiers. Random Forest and 

Neural Networks with a hybrid approach achieve a higher 

accuracy percentage. However, other classifiers such as 

Support Vector Machine (SVM), Deep Neural Networks 

(DNN), and ANN also produced excellent results with more 

than 80 pecent accuracy. 

Findings from [31], [55], [56], and [57] used the same CKD 

dataset with different approaches to the AI classifier. In [31], 

the number of attributes was reduced using the correlation-

based attribute selection (CBAS) method and fuzzy rule set-

based attribute selection (FRSBAS). Both approaches then 

reduced the number of attributes to 13 and 15 features, 

respectively. However, the selected attributes were not listed in 

this paper. 

Although [55] experimented with a basis for the ANN 

approach, the study did not indicate the total number of 

attributes being used. The research used a correlation-based 

feature subset (CFS) to reduce the number of attributes. Since 

there is no proper number of attributes and the input of the 

prediction model, the performance could not be comparable. 

Meanwhile, findings from [56] proposed four different 

algorithms, which are PNN, Multilayer Perceptron (MLP), 

SVM, and Radial Basis Function (RBF). The accuracy of each 

algorithm has been compared. PNN produced the highest 

percentage of accuracy. All proposed prediction model 

performs up to 96 percent, however, the attribute for the study 

was doubted. One of the significant outputs did not tally with 

the original CKD dataset of UCI ML Respiratory. 

Results from [57] established a hybrid modified Neural 

Network approach in CKD classification. Multilayer 
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Perceptron Feed-forward Networks (MLP-FFN) and neural 

networks based on Particle Swarm Optimization (PSO-NN) 

were used in this experiment. Although the accuracy is slightly 

high, the reports did not mention any feature selection and 

imputation process to reduce the number of attributes and 

missing data. 

In other studies, for example [58], [59], [60], and [61], 

researchers used different types of datasets to develop a CKD 

prediction model. In [58], [59], and [60], CT scans and 

ultrasound images of CKD were used to produce classifiers. 

Both experiments were performed with high accuracy. 

However, it might be costly in actual diagnosis, and patients 

must undergo an expensive clinical test to determine CKD 

stages. 

In [61], 35,332 Electronic Health Records of hypertension 

patients were used for analysis. In this experiment, a hybrid 

classifier was implemented to predict CKD. The performance 

of this prediction model is more than 85 percent; however, the 

imbalanced dataset between CKD and non-CKD patients was 

not observed. Only 3.11 percent of data represent CKD, with 

the rest being non-CKD. The proper method to handle 

imbalanced data in this experiment was also not mentioned. 

 

 

 
Fig. 2 Flowchart to determine the optimum number of hidden 

nodes. 

 

 
TABLE 2. CKD/NON-CKD CLASSIFICATION RESULTS. 

Class Subject Dataset Method Acc. (%) References 

CKD/          

Non-CKD 

250 CKD                 150 

non-CKD 

UCI ML [62] FRSBAS with Random 

Forest Classifier 

99.5% [31] 

Risk of CKD on 

radiation 

therapy 

CT images                29 

CKD                    21 

non-CKD 

50 adult patients with abdominal 

cancers 

Random Forest Classifier 94% [58] 

CKD/         

Non-CKD 

4,940 augmented 

images of kidney 

Radiology department, Hospital, 

Chennai, India [63][64] 

SVM + RLN 87.31% [59] 

CKD/         
Non-CKD 

4,940 augmented 
images of kidney 

Radiology department, Hospital, 
Chennai, India [63][64] 

DNN 96.54% [60] 

CKD/         

Non-CKD 

250 CKD                150 

non-CKD 

UCI ML [62] ANN 90.28% [55] 

CKD/         

Non-CKD 

250 CKD                150 

non-CKD 

UCI ML [62] Probabilistic Neural 

Networks (PNN) 

96.7% [56] 

CKD/         
Non-CKD 

250 CKD                150 
non-CKD 

UCI ML [62] Hybrid Modified Cuckoo 
Search-Neural Network 

99.6% [57] 

CKD/         

Non-CKD 

1,100 CKD        34,232 

non-CKD 

Electronic Health Records Hybrid Neural Network 89.7% [61] 

1Class.: classification; bac. pneu.: bacterial pneumonia; Sens.: sensitivity; Spec.: specificity; Prec.: precision; Acc.: accuracy; Ref.: reference 

 

IV. CHALLENGES IN CKD PREDICTION USING ML 

This section reviews the data type, feature selection, and 

method of handling missing particular data. This chapter also 

discusses the difference between online repositories and real 

data from clinical practice. 

4.1 Data Type and Form 

This study comprises data collection and characterisation of 

urine and blood-based attributes, employing multiple 

imputation methods to generate synthetic data. The primary 

objective is the development of a CKD prediction model for 

both urine and blood-based attributes, followed by a 

comparative analysis. 

An experiment to predict CKD utilized a dataset from a 

previous researcher, comprising 400 data samples obtained 

from the publicly available UCI Machine Learning Repository 

[62]. The dataset was divided into two distinct control groups: 

250 samples representing the CKD group and the remaining 

150 samples serving as the healthy control group. This database 

encompasses thirteen essential attributes for analysis. 

The original dataset contains some missing data points. To 

address this issue, multiple imputations were performed, 

resulting in the creation of synthetic data points. Consequently, 

the overall dataset size was increased to N=2000. Notably, 
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attributes such as Albumin, Sugar, Pus Cell, and Pus Cell 

Clump patterns were retained without alteration. However, it's 

worth noting that while Specific Gravity adopts a nominal 

value, its pattern deviates slightly from that of the original 

dataset. 

The total accuracy of both urine-based and blood-based 

properties was 96.0 percent and 98.0 percent, respectively. 

Although only by a slight margin of 2.0 percent, the ANN 

prediction model constructed using blood-based variables 

outperformed the others. The model is constructed using urine-

based features. However, this model is recommended for this 

study due to the following reasons: 1) The model requires only 

five input variables and utilizes eight hidden nodes. This 

reduction in the number of nodes contributes to a decrease in 

the model's computational complexity, rendering it more 

suitable for integration into intelligent diagnostic systems. 2) 

Urine-based attributes offer greater convenience and are non-

invasive for both patients and medical practitioners, resulting in 

more efficient data collection and processing compared to 

blood-based attributes. 

4.2 Feature Selection 

The primary objectives of this analysis are to enhance 

diagnostic systems and decrease medical treatment expenses by 

facilitating early interventions [65]. Despite the ongoing efforts 

of numerous researchers, these systems have not yet reached 

their maximum potential. Many prior studies were constructed 

using open-source repositories that include incomplete data. 

Consequently, the process of feature selection, focusing on the 

most influential attributes in each dataset, is of paramount 

importance to optimize the predictive model. For example, in 

[66], Common Spatial Patterns (CSP) and Linear Discriminant 

Analysis (LDA) were proposed to filter and identify the 

dominant attributes in detecting CKD. 

Furthermore, a study in 2018 implemented feature selection 

to provide an optimal solution before training the data with a 

different classifier [67]. Another two groups of researchers also 

proved that feature selection gave a significant method to 

improve the performance of the CKD prediction model. 

Findings from [68] implemented feature selection to enhance 

CKD diagnosis. Meanwhile, findings from [69] reduced the 

number of attributes from 25 to 14 using the feature selection 

approach. As a result, both studies were studied to gain the 

percentage of accuracy of the CKD detection model up to 98 

percent.  

Findings from [70] proposed feature selection adaptive 

probabilistic divergence-based feature selection (APDFS) with 

a combination of ML classifier hyper-parameterized logistic 

regression model (HLRM) in performing early prediction of 

CKD. The experiment showed only 19 of 52 attributes are used 

to identify chronic diseases with 91.6 percent accuracy. It can 

be concluded that feature selection will help to save money for 

patients by reducing clinical tests and increasing the ML 

classifier efficiency. 

4.3 Missing Data 

Several tests and experiments have been employed for CKD 

prediction, such as image processing from ultrasound, capturing 

disease trends using a signal, missing and imbalanced data, 

feature selection and a comparison of effectiveness between 

various classifiers. 

Multiple imputations are one of the most common methods 

for dealing with missing data points. Multiple imputations, in 

contrast to a single imputation approach, enable a 

comprehensive examination of a dataset and the generation of 

coherent synthetic data points. This method incorporates 

statistical inference and includes illustrative case examples 

[71]. Through the iterative process of adding average values to 

the missing data, reliable imputed values can be obtained 

through three to five iterations [72]. It can also improve model 

performance by reducing errors caused by unequal distribution 

among the control groups [73]. As a result, multiple imputations 

become a significant tool for increasing the study's validity and 

reducing resource loss caused by missing data [36]. 

The average value from the whole data is used to generate 

missing data. Following that, the multiple imputation process is 

repeated five times, bringing the total number of samples per 

control group to 1000. Only numerical properties have their 

mean values implemented. Nominal qualities, on the other 

hand, are unaffected. The imputation process relies on a newly 

derived regression model, which is employed to estimate 

missing values for each variable [74].  

This relationship can be represented by equation (1). When 

dealing with a variable 𝑌𝑗 that has missing values, a model is 

constructed using the available non-missing observations. This 

fitted model provides estimates for the regression parameters 

(𝛽𝑜, 𝛽1, … , 𝛽(𝑗−1)) and associated covariance matrix 𝜎𝑗𝑌𝑗, where 

𝑌𝑗 is the usual matrix from the intercept and variable 

𝑌1, 𝑌2, … , 𝑌(𝑗−1). 

 

𝑌𝑗 = 𝛽𝑜 + 𝛽1𝑌1 + 𝛽2𝑌2 +⋯+ 𝛽(𝑗−1)𝑌(𝑗−1) (1) 

 

For each imputation, new parameters 

(β_(*o),β_(*1),…,β_(*(j-1) )) and σ_(*j) are drawn from the 

posterior predictive distribution of the missing data. The 

missing values of the original data are then replaced by an 

expression of (2). 

 

𝛽𝑜 + 𝛽1𝑦1 + 𝛽2𝑦2 +⋯+ 𝛽(𝑗−1)𝑦(𝑗−1) + 𝑧𝑖𝜎𝑗 (2) 

 

Where 𝑦1 , 𝑦2, … , 𝑦(𝑗−1)are the covariate values of the first    (j-

1) variables and zi is a simulated normal deviation. 

4.4 Online Repository versus Real Data from Clinical 

Practise 

Online repositories and real data from clinical practice are 

significant for evaluating the safety and efficacy of the chronic 

disease prediction model. Both types of data have come out 

from the sources that were collected with real patients and 

scenarios. However, online repositories might contain outdated 

data that are not relevant to the latest experiment. Therefore, 

fresh data within a population is very important to get an 

accurate result. 

Findings from [75] mentioned that the impact of utilisation 

of real clinical data can shed light on how well medications 

work over the long term in big, diverse groups of people. 

However, the management of clinical datasets must follow the 
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standard and adhere to the full protocol to avoid data leakage 

that can lead to concerns regarding data security. Therefore, a 

group of researchers in China [76] proposed improvements in 

handling electronic medical records (EMR) in their country. 

The researcher recommended modernising hospital information 

systems, pushing for data standards, and setting up a separate 

platform for clinical research. The suggestion may be to fix the 

current issue of clinical data in China. 

V. WAY FORWARD IN CKD PREDICTION 

Many research works have introduced a lot of prediction 

models for CKD. Among the studies implement ML, neural 

network, deep learning, as well a hybrid prediction model, 

consisting of two major ML approaches. Generally, previous 

studies always implement datasets from online repositories in 

fact, several studies conduct experiments from real data 

collection.  

In future work, CKD prediction should be based on invasive 

and non-invasive methods. Therefore, data on CKD should be 

separated into two different groups, which are blood-based and 

urine-based analytes [77]. The CKD dataset also includes with 

GFR value that has been calculated based on age, gender, and 

race to perform stage prediction. 

Currently, this paper focuses on developing a CKD 

prediction model using the ANN approach. In this paper, we 

also apply multiple imputations to prevent and reduce the 

missing value of CKD datasets [78]. In the future, Deep 

Learning techniques like Convolutional Neural Networks 

(CNNs), Long Short-Term Memory (LSTM), or Recurrent 

Neural Networks (RNN) will be employed for predicting the 

likelihood of CKD in patients. 

The ultimate goal of all these prediction models should be 

actionable information for either patients or clinicians. This 

paper thus concurrently developed an Internet of Things-based 

kidney home monitoring system using urine samples [79]. The 

system does a daily analysis of urine concentration in the 

bathroom. Due to the asymptotic nature of CKD, the basic idea 

is that individuals might identify early indicators of the disease 

at home. The technology is non-invasive, and users may use it 

without help from medical professionals. The technology 

connects to users' mobile apps, collects data from their urine 

samples, and sends alerts based on the results. The app will then 

alert the user, whether a doctor's diagnosis is necessary for their 

health condition. 

VI. CONCLUSION 

Recent breakthroughs in AI methodologies have led to the 

development of successful AI applications in the field of CKD. 

Even the possibility that AI expert systems would one day 

replace human physicians has been a heated issue of debate. 

Despite this, we explore the possibility that an AI expert system 

can assist a human physician in making better decisions, and in 

certain cases even replace human judgment. Various AI 

systems can help extract vital information from vast quantities 

of clinical data. Recently, ML has demonstrated considerable 

promise for early CKD diagnosis. 

In addition, ML systems are trained to be capable of self-

learning, error correction, and generating accurate results. This 

paper investigated the application of ML techniques in 

diagnosing CKD. In this paper, the effect of ML algorithms and 

their consistency on CKD diagnosis was evaluated to reduce 

misdiagnosis mistakes. To achieve the primary objective, this 

paper devised a search strategy. In this prospect, different 

scientific journals, including Google Scholar, IEEE, 

ScienceDirect, Web of Science, Wiley Online Library, and 

Elsevier, were chosen to fetch published scientific papers. 

All the retrieved papers were organised according to their 

authors, publication years, ML approaches used for various 

diseases, results, and, finally, the future of AI-based disease 

detection methods. The data indicate that the number of papers 

published in the medical profession has increased rapidly. 

Another aim of this paper was to reveal the standard 

methodologies for applying ML in disease detection. Next, 

following most researchers, this paper investigated which ML 

method was most effective for CKD diagnosis. Based on the 

findings, this paper concluded that ML-assisted diagnosis 

enhanced the diagnostic process and identified CKD in its early 

stages, enabling the selection of the most effective treatment 

approach. In addition, the impact of each ML technique was 

evaluated based on the accuracy of the CKD diagnosis 

described in the literature.  

Aside from that, it was observed that many publications had 

reported a combination of ML approaches to detect any disease 

or to enhance the diagnostic process. Afterwards, this paper 

summarised the challenges in CKD prediction using ML. As 

such, it was concluded that data analytics confronted several 

issues in utilising ML for CKD prediction, namely the online 

respiratory. The main issues revolved around different data 

types, feature selection, and dealing with missing data in the 

respiratory itself. Future researchers should gather first-hand 

real data from clinical practices for better accuracy. 

AI is not confined to recognising any specific disease. The 

results of this paper may therefore be useful for research in the 

future. Furthermore, we found that over 91 percent of AI 

approaches had a favourable influence on illness detection in 

this paper. The effectiveness of AI in detecting CKD cannot be 

overlooked. Using AI methods, medical journal papers 

published within a specific decade were observed. In future 

investigations, more comprehensive studies should be planned 

to determine if deep learning methods may indeed enhance 

CKD diagnosis. Furthermore, the data type for deep learning 

approaches should be studied which is more effective. Finally, 

future research should include a thorough evaluation of AI's 

economic impact on healthcare in general. 
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