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 Electromagnetic tomography (EMT) is a type of electrical tomography 

based on electromagnetic induction. Reconstructing images with EMT 

involves solving inverse problems, which are often poorly defined due 

to limited prior information about imaging features. Optimization 

methods such as conjugate gradient (CG), Quasi-Newton, and Steepest 

Descent can help minimize these problems. The conjugate gradient (CG) 

algorithm is an iterative method that efficiently handles equations with 

multiple inputs, saving time but requiring more memory. In this 

research, four hybrid CG methods which is MN-LAMR, MN-FR, MN-

LS and MN-PRP are used to reduce the number of iterations (NOI) and 

CPU time, achieving excellent numerical performance. Based on 

numerical performances, MN-LAMR is the best method. Then, MN-

LAMR is implemented into the EMT system to produce a new system 

called EMT-CG. The efficiency of the EMT and EMT-CG systems is 

evaluated based on error analysis using root mean square error (RMSE). 

The implementation of MN-LAMR into EMT improves its system 

efficiency according to the smaller number RMSE in comparison 

between EMT and EMT-CG. The findings highlight the hybrid CG 

method's capability within the EMT system which will be useful in 

enhancing the medical field technology. 
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1. INTRODUCTION 

Optimization means finding the best solution among different feasible alternatives, where feasible solutions 

mean those that satisfy all the constraints (Kheiri, 2018). Optimization can be defined as one of the branches 
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of knowledge dealing with finding the optimal solutions to a specific issue within a set of alternatives 

(Khaleel & Mitras, 2020). Unconstrained optimization consists of minimizing a function which depends on 

several real variables without any restrictions on the values of these variables (Andrei, 2020). 

Electromagnetic tomography (EMT) is a kind of electrical tomography technology based on 

electromagnetic induction principle (Liu et al., 2019). The word “tomography” comes from the Greek 

words “tomos” which means “a slice”, “a section,”, “graph,” and “image” (Wei & Soleimani, 2013). The 

portability of EMT systems allows for their potential exploitation in onsite medical emergencies, such as 

stroke or sport and road accidents. However, such a possibility is currently hindered by the high 

computational time that required to retrieve accurate tomographic images, as the governing equations of 

EMT are generally nonlinear (Xiang et al., 2020).  

The conjugate gradient (CG) algorithm is an iterative method for efficiently treating equations 

involving multiple external forces that offer significant time savings but require more memory (Smith et 

al., 1989). It was stated by Nocedal and Wright (2006) that CG is among the most useful techniques for 

solving large linear systems of equations and can be adapted to solve nonlinear optimization problems. For 

instance, real-life problems that require the application of CG include portfolio optimization in finance, 

solving heat conditions in materials, image deblurring, and path planning in robotics. Most of the 

unconstrained optimization problems are solved using the CG method to avoid the high computational cost 

of Newton’s method and to accelerate the convergence rate of steepest descent. The CG method can be 

classified in 6 groups which is classical, hybrid, modified, scaled, parametrized and accelerated (Andrei, 

2008). There are several types of CG coefficients such as Linda-Aini-Mustafa-Rivaie (LAMR), Hestenes - 

Stiefel (HS), Fletcher – Reeves (FR), Polak – Ribière – Polyak (PRP), Liu – Storey (LS) and Dai – Yuan 

(DY). The best CG can be selected depending on the result, where sufficient descent is achieved with lower 

central processing unit (CPU) time and smaller number of iteration (NOI) times. 

Some common line search methods are used with CG, depending on the specific implementation and 

requirements of the optimization problem. The Wolfe line search algorithm is a method for finding descent 

directions in a scalar minimization problem when the line search satisfies the standard Wolfe conditions 

(Gonçalves & Prudente, 2020). The CG method is applied for solving the inverse problems of EMT to 

reconstruct and display the image from the measured data. In the medical field, this imaging technique 

utilizes electrical measurements to reconstruct the images of the internal conductivity distribution within a 

body. It is also considered much safer compared to certain X-ray-based imaging techniques, as ionizing 

radiation is not involved. For instance, the EMT can produce images of brain tumors which can help the 

medical field to detect cancer without having to risk the patient’s health getting exposure from the radiation.  

2. LITERATURE REVIEW 

Optimization plays a crucial part in solving real-life problems as it contributes to efficiency, decision-

making, and resource allocation in numerous fields. The focus of this research is to check the effectiveness 

of different types of MN hybrid CG with LAMR, FR, LS, and PRP to find the fastest CPU time and fewer 

NOI before solving the inverse problem. In the inverse problem of tomography field, the solution of image 

reconstruction is often ill-posed and the prior information about imagining features is limited (Xiao et ak., 

2018). The research proceeds by conducting image reconstruction to prove the effectiveness of the new 

hybrid CG methods. According to Marr (1980), image reconstruction which is also known as computerized 

tomography is a mathematical process that generates tomographic images from X-ray projection data 

acquired at many different angles around the patient. There are two crucial parts for image reconstruction 

to success which includes the forward and inverse problem. However, this research intends to determine 

the success in implementing hybrid CG into the EMT system by focusing more on solving the inverse 

problem. 
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2.1 Forward Problem in EMT 

According to Liu et. all (2019), the Maxwell’s equation group of harmonic forms given as follows: 

 

{𝛻 × �⃗⃗� = 𝐽 + 𝑗𝜔�⃗⃗�  𝛻𝑥�⃗� = −𝑗𝜔�⃗�  𝛻 ⋅ �⃗� = 0 𝛻 ⋅ �⃗⃗� = 0  (1) 

 

Based on Sánchez et al. (2012), �⃗⃗�  is the magnetic field intensity, �⃗�  is the electric field intensity, 𝐽  is 

the current density, �⃗⃗�  is the electric displacement field, �⃗�  is the magnetic flux density, 𝑗 is the imaginary 

unit and 𝜔 is the angular frequency of the harmonic excitation. 

 

The next step is to define the magnetic vector potential which satisfies as below: 

 

𝛻 × 𝐴 = �⃗�  (2) 

 

The purpose is to simplify the Maxwell’s equations where it satisfies the condition 𝛻 ⋅ �⃗� = 0 which 

defined as the curl of magnetic vector potential 𝐴 . It is crucial and to be applied in the coding for accurate 

reconstruction of the material properties from the electromagnetic measurements. 

 

For the distribution of the excitation coils in EMT system, the corresponding Neumann boundary 

conditions are determined: 

{𝜇−1 ⋅ (
𝜕2𝐴 

𝜕𝑥2
+

𝜕2𝐴 

𝜕𝑦2
) = 𝑗𝜔𝛿𝐴  

𝜕𝐴 

𝜕𝑛
|𝑥2+𝑦2=𝑅2 = 𝜇0𝐼 ̇ (3) 

 

where 𝑅 is the radius of the circumference of the excitation coil, 𝜇0 is the permeability of air and 𝐼 ̇is the 

current density of the excitation coil. For the first equation, the magnetic vector potential 𝐴  indicates its 

behavior within the domain considering the harmonic excitation. The second equation is the Neumann 

boundary condition that specifies the behaviour of 𝐴  on the boundary of the domain, where 𝑛 denotes the 

outward normal direction at the boundary which ties the boundary values of 𝐴  to the current 𝐼.̇ 

In the forward problem, the solution of sensitivity matrix is the key, and it is also an important index 

to solve the inverse problem which defines as below: 

𝑠𝑖𝑗(𝑘) =
𝐴𝑗

(𝑘)
− 𝐴𝑗(𝜇)

𝐴𝑗(𝜇) − 𝐴𝑗(𝜇0)
⋅

1

𝜇 − 𝜇0

⋅ 𝜔(𝑘) (4) 

2.2 Inverse Problem in EMT 

An inverse problem arises when the spatial sensitivity coefficient matrix of the object field formed is 

detected by the EMT system to obtain the value in all directions of the object.  

The inverse problem of the EMT system can be defined as the following equation: 

 

𝑆𝑥 = 𝑏 (5) 

 

where 𝑆 ∈ 𝑅𝑚×𝑛, 𝑥 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅𝑚 and 𝑚 < 𝑛.  

The calculation of the corresponding objective function is performed multiple times so that it 

gradually approaches the optimal solution. The inverse problem is then optimized into unconstrained 

continuous differential equations, as shown in the result below: 
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𝑓(𝑥)  = (𝑆𝑥 − 𝑏)  (6) 

 

The iterative formula of the CG algorithm for the search direction, 𝑑𝑘 is defined below, if the equation 

𝑓(𝑥) is continuously differentiable: 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑘𝑑𝑘  (7) 

 

𝑑𝑘 = {−𝑔𝑘     ′𝑘 = 0 − 𝑔𝑘 + 𝛽𝑘𝑑𝑘−1         , 𝑘 ≥ 1  (8) 

  

where 𝑔(𝑥) = 𝑓(𝑥). According to Al-Namat and Al-Naemi (2020), the strong Wolfe line search conditions 

are required as follows: 

 

𝑓(𝑥𝑘 + 𝑎𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝜎𝑎𝑘𝑑𝑘  (9) 

 

|𝑔(𝑥𝑘 + 𝑎𝑘𝑑𝑘)| ≤ 𝛿|𝑔𝑘
𝑇𝑑𝑘|  (10) 

 

where 0 < 𝜎 < 𝛿 < 1 to find an approximation of 𝑎𝑘. Different choices for the parameter 𝛽𝑘 correspond 

to different CG methods. In this research, the chosen formula of 𝛽𝑘 is listed in Table 1. 

 

Table 1. List of Coefficients and its Author 

No Authors Coefficients 

1 Polar, Ribiere and Polyak (1969) 𝛽
𝑘

𝑃𝑅𝑃
=

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑔𝑘−1‖
2  

2 Liu and Storey (1991) 𝛽
𝑘

𝐿𝑆
=

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘−1
𝑇 𝑔𝑘−1

 

3 Linda, Aini, Mustafa and Rivaie (2017) 𝛽
𝑘

𝐿𝐴𝑀𝑅
=

𝑔𝑘
𝑇 (

‖𝑑𝑘−1‖
‖𝑑𝑘−1 − 𝑔𝑘‖

𝑔𝑘 − 𝑔𝑘−1)

‖𝑑𝑘−1‖
‖𝑑𝑘−1 − 𝑔𝑘‖

‖𝑑𝑘−1‖
2

 

4 Fletcher-Reeves (1964) 𝛽
𝑘

𝐹𝑅
=

‖𝑔𝑘‖
2

‖𝑔𝑘−1‖
2 

2.3 Monarchy Metaheuristic (MN) 

The most important aspect of the research is the utilization of this hybrid CG algorithm to demonstrate 

successful real-world applications. A new CG coefficient, MN was proposed by Liu et al. (2019) which 

improve the convergence of the algorithm, increase the step size, reduce NOI and shorten the CPU time. 

The MN conjugate coefficient is defined as below: 

 

𝛽𝑘
𝑀𝑁 =

‖𝑔𝑘‖
2 − {0, 𝑔𝑘

𝑇 , 𝑔𝑘−1} 

{‖𝑔𝑘−1‖
2, 𝑑𝑘−1

𝑇 𝑦𝑘−1} 
 (11) 

 

As the hybrid CG aims to enhance the performance of the method, a hybridization process takes place, 

followed by a comparison for each hybrid CG with the new MN coefficient. According to Liu et al (2019), 

the numerical test using different images are done as in Table 2 where M, I, T and S respectively represent 

the name of the CG algorithm, NOI, CPU time and the termination condition of the algorithm. When S=1, 

it means that the system can be solved using hybrid CG while S=0 indicates that the implementation of 

hybrid CG is failed. 
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Table 2. Numerical Test with Four Different Images 

Original Image M I T/s S 

 

PRP 78 64.2134 1 

HCG 45 51.4252 1 

MN 
34 

40.1254 
1 

 

PRP 64 65.7658 1 

HCG 47 56.1543 1 

MN 
36 

39.7853 
1 

 

PRP 88 71.0346 1 

HCG 78 58.5655 1 

MN 
67 

49.9987 
1 

 

PRP 80 65.7789 1 

HCG 79 70.3475 1 

MN 
45 

37.9801 
1 

2.4 EMT Applications 

It was stated by Khan and Ling (2019) that EMT, also known as electrical impedance tomography 

(EIT) is a new imaging method involving the injection of a small amount of current to determine the 

electrical properties of tissues and to measure the resulting voltages. It is safe to say that EMT is better than 

magnetic resonance imaging (MRI) and computed tomography (CT) because EMT in nature is non-invasive 

and constructs radiation free images.  

EIT has an advantage over the other imaging techniques such as its portability, low-cost and faster 

imaging capabilities (Khan & Ling, 2019). Ever since the potential use of EMT or EIT as an imaging model 

is recognized in the medical field, an improvement in EMT through hybridization due to its low spatial 

resolution, which can impact the ability to precisely locate structures or abnormalities within the body, and 

the ill-posed nature of the image reconstruction involving a complex mathematical inverse problem can be 

achieved. Therefore, the hybridization of EMT with the best hybrid CG can contribute to improving the 

performance by reducing the CPU time, producing less NOI and increasing the speed of convergence. 

2.5 Discussion on Hybrid Conjugate Gradient Method for EMT Applications 

Based on Liu et al. (2019), MN hybrid CG method improved image reconstruction by reducing the 

NOI and CPU time compared to traditional CG methods. The previous study successfully demonstrates that 

hybrid CG approaches can optimize EMT application by enhancing computational efficiency, reducing 

convergence time and providing systemic comparison of PRP, HCG and MN methods which highlighting 

the effectiveness of hybrid approaches in EMT. However, it has limited evaluation scope by using small 

number of test cases, lack of alternative hybridization strategies as it mainly focuses on MN-based hybrid 

CG and lack of structured error analysis. 

This study builds upon Liu et al. (2019) work by broadening the scope of hybrid CG methods and 

providing a quantitative error analysis performance evaluation using RMSE. To address the limitations on 

Liu et. al (2019) study, multiple hybrid CG methods is tested to identify the best approach to the EMT and 

exploring broader test cases and diverse image structures to enhance generalizability. This study also aims 

to refine existing methods and provide a more robust solution for EMT applications further ensures that the 

best-performing algorithm leading to improved imaging accuracy and computational efficiency. 
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This study uses the RMSE as performance metrics to evaluate the accuracy of EMT image application 

by measuring the difference between the reconstructed image and the original image. A lower RMSE 

indicates higher reconstruction accuracy by comparing different optimization methods between EMT and 

EMT-CG and determining the best approach for EMT applications. 

Successful hybridization of EMT-CG has significant implications for EMT application especially in 

medical imaging which demanded accuracy and fast reconstruction of conductivity distribution for 

applications such as brain stroke detection, breast cancer screening and lung function assessment. EMT-

CG improved image reconstruction speed which allows quicker stroke diagnosis using EMT, a non-invasive 

monitoring of tissue conductivity changes as it benefits from fast convergence methods and enhance 

accuracy of respiratory monitoring. 

3. METHODOLOGY 

3.1 New Hybrid Conjugate Gradient Method and Algorithm 

MN is chosen to combine with four different 𝛽𝑘 coefficients, which are PRP, LS, LAMR and FR. The 

new methods for hybrid CG are stated as below: 

 

𝛽𝑘
𝑀𝑁−𝐿𝐴𝑀𝑅 = {𝛽𝑘

𝑀𝑁      ⅈ𝑓      0 ≤ 𝛽𝑘
𝐿𝐴𝑀𝑅 ≤ 𝛽𝑘

𝑀𝑁  𝛽𝑘
𝐿𝐴𝑀𝑅    𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒 (12) 

𝛽𝑘
𝑀𝑁−𝑃𝑅𝑃 = {𝛽𝑘

𝑀𝑁      ⅈ𝑓      0 ≤ 𝛽𝑘
𝑃𝑅𝑃 ≤ 𝛽𝑘

𝑀𝑁 𝛽𝑘
𝑃𝑅𝑃   𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒 (13) 

𝛽𝑘
𝑀𝑁−𝐿𝑆 = {𝛽𝑘

𝑀𝑁      ⅈ𝑓      0 ≤ 𝛽𝑘
𝐿𝑆 ≤ 𝛽𝑘

𝑀𝑁 𝛽𝑘
𝐿𝑆   𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒 (14) 

𝛽𝑘
𝑀𝑁−𝐹𝑅 = {𝛽𝑘

𝑀𝑁       ⅈ𝑓      0 ≤ 𝛽𝑘
𝐹𝑅 ≤ 𝛽𝑘

𝑀𝑁 𝛽𝑘
𝐹𝑅    𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒 (15) 

 

The names of each hybrid CG method will be represented by MN-PRP, MN-LS, MN-LAMR and 

MN-FR respectively upon successful hybridization of MN with each of the four different 𝛽𝑘 coefficients 

by conducting numerical analysis. According to Trefethen (1992), the definition of numerical analysis is 

about study of algorithms for the problems of continuous mathematics that involves real or complex 

variables which may be impossible to solve analytically. Hence, numerical analysis helps to determine the 

accuracy, precision, stability, convergence and visualization for the research.  

 

The algorithm for numerical test is below, 

 

Step 1: Initialization. Given 𝑥0, set 𝑘 = 0. 

Step 2: Selection of initial points 𝑥1𝜖 𝑅
𝑛 , set 𝑘 = 1 and calculate 𝑔1 = 𝑔(𝑥1). 

Step 3: If ‖𝑔𝑘‖ < 𝜀, then iteration stop. 

Step 4: Set 𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑘𝑑𝑘 and 𝑔𝑘+1 = 𝑔(𝑥𝑘+1). 

Step 5: Computing hybrid CG coefficient. 

             Computing 𝛽𝑘 based on the formula. 

Step 6: Computing search directions, 𝑑𝑘 = −𝑔𝑘 + 𝛽𝑘𝑑𝑘−1          

 If 𝑔𝑘 = 0, then stop. 

Step 7: Computing step size. Solve 𝑎𝑘 = 𝑓( 𝑥𝑘 + 𝑎𝑑𝑘). 

Step 8: Updating new point, 𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑘𝑑𝑘. 

Step 9: Convergent test and stopping criteria. 

 If 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘) and ‖𝑔𝑘‖ < 𝜀 then stop. Otherwise go to step 1 with 𝑘 = 𝑘 + 1. 
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4. RESULTS AND DISCUSSION 

Four CG coefficients are chosen for numerical testing by solving 15 standard test functions which are listed 

in Table 3. 

 

Table 3. List of Standard Test Functions 

No. Test Function Variables Initial Points 

1 Extended White & Holst 2, 4, 10, 100, 500, 1000 (-4,...,-4), (-2,...,-2), (2,...,2), (8,...,8) 

2 Extended Tridiagonal 1 2, 4, 10, 100 (-2,...,-2), (4,...,4), (14,...,14), (21,...,21) 

3 Diagonal 4 2, 4, 10, 100, 500, 1000 (-2,...,-2), (4,...,4), (14,...,14), (21,...,21) 

4 Extended Himmelblau 2, 4, 10, 100, 500, 1000 (-4,...,-4), (2,...,2), (4,...,4), (21,...,21) 

5 Extended Powell 2, 4, 10, 100, 500, 1000 (-2,...,-2), (4,...,4), (14,...,14), (21,...,21) 

6 NONSCOMP 2, 4, 10, 100, 500, 1000 (-4,...,-4), (4,...,4), (7,...,7), (22,...,22) 

7 Extended DENSCHNB 2, 4, 10, 100, 500, 1000 (-2,...,-2), (4,...,4), (14,...,14), (21,...,21) 

8 Extended Quadratic Penalty QP1 2, 4, 10 (-4,...,-4), (2,...,2), (4,...,4), (14,...,14) 

9 Shallow 2, 4, 10, 100, 500, 1000 (-2,...,-2), (2,...,2), (4,...,4), (14,...,14) 

10 Quadratic QF2 2, 4, 10, 100, 500, 1000 (-2,...,-2), (2,...,2), (14,...,14), (22,...,22) 

11 Generalized Tridiagonal 1 2, 4, 10, 100 (-4,...,-4), (-2,...,-2), (14,...,14), (21,...,21) 

12 POWER 2, 4, 10, 100 (-2,...,-2), (2,...,2), (4,...,4), (14,...,14) 

13 Quadratic QF1 2, 4, 10, 100, 500, 1000 (2,...,2), (4,...,4), (14,...,14), (21,...,21) 

14 Sphere 2, 4, 10, 100, 500, 1000 (-2,...,-2), (2,...,2), (4,...,4), (14,...,14) 

15 Sum Squares 2, 4, 10, 100, 500, 1000 (2,...,2), (4,...,4), (14,...,14), (21,...,21) 

 

All these methods are tested using strong Wolfe line search using MATLAB2022b programming are 

recorded. The results of the NOI and CPU for each hybrid CG are interpreted into performance profile 

proposed by Dolan and Moré (2002). In performance profile, the curve line at the top left of the graph 

indicates the fastest method with the smallest NOI or CPU time while the curves at the right side of the 

graph indicates the amount of test functions successfully solved by the methods which also indicates the 

robustness of the method. 
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Fig. 1. Numerical Results of NOI 
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Fig. 2. Numerical Results of CPU Time 

Fig. 1 and Fig. 2 show the performance profile for all the hybrid CG methods in terms of NOI and 

CPU time respectively. Based on Figure 3, the MN-PRP is the fastest, but MN-LAMR is more robust than 

MN-PRP. Through closer inspection, MN-PRP is the most efficient method since it has the highest curve 

as followed by MN-LAMR, MN-LS and MN-FR. At certain times, MN-LAMR takes over MN-PRP 

method. MN-PRP is the fastest method among the other three hybrid CG, but it is unable to solve many test 

functions. Based on Figure 5.1 and Figure 5.2, MN-LAMR converges significantly faster with lowest NOI 

means faster computation and lower CPU time which improves real-time imaging. With the overall 325 

test problems, the summarized results of all the hybrid CG methods are recorded in Table 4. 
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Table 4. Percentage of Test Function Successfully solved by Tested Hybrid CG Methods 

No Methods Percentage (%) 

1 MN-LAMR 100.0 

2 MN-LS 99.7 

3 MN-PRP 98.1 

4 MN-FR 97.2 

 

As shown in Table 4, MN-LAMR solves 100% test problems and this result is followed by MN-LS, 

MN-PRP and MN-FR that are able to solve 99.7%, 98.1% and 97.2% test problems respectively. Thus, it 

is concluded that MN-LAMR is the best coefficient out of four hybrid CG. 

Then, the best hybrid CG method which is MN-LAMR is applied into the EMT system. Using three 

different images for reconstruction purposes, the MN-LAMR method is expected to solve the inverse 

problem in EMT system. The results are compared with the original solution for EMT system using MN 

algorithm based on the RMSE. The formula of the RMSE is as follows: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑒𝑖)

2

𝑛

𝑖=1

 (16) 

 

The performance of EMT and EMT-CG based on the result of (16) obtained from the output of image 

reconstruction programming are compared in Table 5. 

 

Table 5. RMSE for Different Images 

Images 
RMSE 

EMT EMT-CG 

 
Brain 

0.8061 0.8132 

 

 
Lung 

15.0136 13.5611 

 

 
Arm 

0.8747 0.8695 
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The difference of RMSE between the EMT and EMT-CG is so subtle because the values of RMSE 

are so close for both systems. However, EMT-CG best two results out of three selected pictures which 

indicates that EMT-CG system is better than EMT system. This suggests that the implementation of hybrid 

CG coefficient into the EMT system is successful. The approach to implement hybrid CG as an alternative 

to reconstruct the image is possible through this research. 

The improvements of EMT-CG in convergence speed, computation time and accuracy is useful in 

real-life applications. For instance, faster scans for emergency care as it provides quicker processing for 

real-time monitoring, better accuracy in detecting health problems as lower RMSE values show that EMT-

CG produces clearer and more detailed images which help in detecting tumours or cancer earlier. 

5. CONCLUSION 

The results highlight the effectiveness of the MN-LAMR method in electromagnetic tomography proven 
that MN-LAMR was the most efficient hybrid CG method by outperforming other tested methods in terms 
of NOI and CPU time. The implementation of EMT-CG significantly improves image reconstruction 
accuracy as shown by smaller result than EMT using RMSE analysis making it more suitable for practical 
applications. Overall, the implementation of CG method ion electromagnetic tomography is successful 
providing solution to improve inverse problem-solving techniques in image reconstruction of EMT. 
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