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 COVID-19 emerged in late 2019 and rapidly spread worldwide, posing 

a significant challenge to effective outbreak management. This study 

employs the Susceptible-Infected-Recovered (SIR) model to understand 

the transmission dynamics of COVID-19 in Malaysia, with a population 

of 34.3 million. Focusing on key phases implemented like the Movement 

Control Order (MCO) and Recovery Movement Control Order 

(RMCO), the research evaluates infection rates, recovery dynamics, and 

reproduction numbers using real-world data from the Johns Hopkins 

University COVID-19 Dashboard. During the MCO phase (18 March 

2020 to 3 May 2020), the transmission rate was 0.0806, the recovery rate 

was 0.0309, and the basic reproduction number (R0) was 2.607, with 

90.52% of the population remaining susceptible post-phase. The RMCO 

phase (10 June 2020 to 31 March 2021) saw reduced transmission and 

recovery rates of 0.0880 and 0.0518, respectively, resulting in an R0 of 

1.698 and 68.97% of the population remaining susceptible. The peak 

infection rate during RMCO was significantly lower (1.698%), with the 

infection peak forecasted for 11 December 2020. The findings offer 

actionable insights for policymakers, demonstrating how targeted 

lockdown measures can significantly reduce transmission rates and 

delay infection peaks while emphasizing the SIR model's utility in 

providing timely insights during evolving public health crises. 
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1. INTRODUCTION 

Infectious diseases caused by various pathogens pose significant risks to public health and societal stability. 

These diseases can spread among individuals, animals, and even across species, creating a complex 
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transmission network (Ahn et al., 2020). Meanwhile, a subset of these pathogens includes parasites, the 

majority of which are bacterial in nature. Disorders caused by parasites are classified as parasitic diseases. 

Monitoring and mitigating the spread of infectious diseases require proactive measures from epidemic 

prevention divisions. These agencies must remain vigilant, promptly reporting outbreaks to relevant 

authorities to safeguard public health (Hanson et al., 2020). Transmission of infectious diseases can occur 

through diverse pathways, including air, water, and contaminated food sources. The impacts of such 

outbreaks are far-reaching, affecting both the economic and physical well-being of affected populations. 

This is particularly evident in the absence of vaccines, as was the case during the early stages of the COVID-

19 pandemic. Without immediate vaccine availability, prediction and prevention became critical strategies 

for controlling the virus's spread (Nicolle et al., 2019). 

Established on datasets from the World Health Organization (WHO), the global death toll attributed 

to COVID-19 has surpassed 5 million individuals. Early public health interventions significantly mitigated 

the development of the virus and reduced mortality. COVID-19 primarily spreads through respiratory 

droplets and direct human contact. The virus has an incubation period of 1 to 14 days, contrasting with the 

longer incubation periods of 14 to 28 days seen in many transmissible illnesses. Notably, COVID-19 is 

infectious during incubation, facilitating rapid person-to-person transmission (Basit et al., 2024). The 

clinical manifestations of COVID-19 include fever, dry cough, and fatigue, with some individuals 

experiencing sore throats, nasal congestion, and diarrhea. Severe cases often lead to breathing difficulties 

and low blood oxygen levels approximately seven days after infection onset (Brosnahan et al., 2020). These 

characteristics underscore the need for rapid detection and intervention to curb transmission and reduce 

severe outcomes. 

(i) Region-Specific Analysis: Unlike global models, this study focuses specifically on Malaysia, 

incorporating real-time intervention phases (MCO and RMCO) to assess their impact on COVID-19 

transmission. 

(ii) Time-Varying Reproduction Number Estimation:  By leveraging empirical data, the study evaluates 

changes in the reproduction number (R0) over time, reflecting dynamic transmission patterns. 

(iii) Effective Approach: The study employs the classical SIR model rather than complex modifications, 

ensuring computational efficiency while maintaining accurate disease progression assessments. 

By addressing these aspects, this research enhances the understanding of COVID-19 transmission 

dynamics in Malaysia and provides a foundation for future epidemic modeling in similar regional contexts. 

2. LITERATURE REVIEW 

This section reviews various studies that have employed the SIR framework and its modifications to 

evaluate transmission and project COVID-19 patterns. In a study conducted by the researchers introduced 

a modified SIR model, incorporating factors such as herd immunity, behavioral transmission rates, and the 

effects of lockdowns, finding that prolonged lockdowns could reduce mortality by one-third; however, the 

model's complexity increases computational demands, making it less practical for real-time forecasting 

(Mojahid et al., 2024; Bayraktar et al., 2020). Also, another type of research proposed the Susceptible-

Infected-Machine-Learning-Recovered (SIMLR) model, integrating machine learning to forecast new 

infections up to four weeks ahead, enhancing accuracy with data-driven insights. Still, the model's reliance 

on vast amounts of data introduces uncertainty in its forecasting (Vega et al., 2022). A study applied the 

SIR model to evaluate epidemic risks across various countries, offering a simple yet effective method for 

assessing the consequences of prematurely lifting quarantine measures. However, its assumptions of 

constant parameters may not fully capture dynamic changes in transmission over time (Nesteruk, 2020). 
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Another Research presents a time-dependent SIR approach that monitors transmission and recovery 

rates over time while examining the effect of undetectable infections on disease spread; however, the 

model's reliance on time-varying parameters increases its complexity, potentially leading to computational 

inefficiencies (Chen et al., 2020). Another study introduced a fractional-order discrete SIR model capable 

of adapting to periodic fluctuations in infection numbers. However, the model’s assumptions regarding 

periodicity may not fully capture abrupt changes in disease dynamics (Djenina et al., 2022). Additionally, 

a study presented a multi-level SIR model designed to identify and model disease waves in real-time. Still, 

its computational demands may hinder its application in large-scale or real-time forecasting (Perakis et al., 

2023). A study created a prognostic SIR model for the COVID-19 pandemic in Colombia, adjusting the 

basic reproduction number (R0) to explore various scenarios; however, the model's reliance on country-

specific data may limit its generalizability to other regions (Lounis & Bagal, 2020). 

A team of scholars introduced a Susceptible-Contacts-Exposed-Infected-Recovered (SCEIR) model 

that includes factors like close contacts and self-protection, offering insights for epidemic prevention 

strategies, but the complexity of the model may make it difficult to implement in resource-limited settings 

(Ni et al., 2022). Another research employed the SIR model to estimate coefficients and forecast the 

potential end time and turning point of COVID-19 in the United States. However, uncertainties in initial 

assumptions and parameter estimation may reduce the accuracy of the long-term forecast (Amiri Mehra et 

al., 2020). Research used an implicit time-discrete SIR model to forecast COVID-19 trends in Fiji, 

achieving strong alignment with reported data; however, the model's discrete nature may limit its ability to 

capture continuous changes in disease dynamics (Singh et al., 2022). 

A study applied the SIR model to track COVID-19 spread in Italy, India, South Korea, and Iran, 

forecasting trends from March to September 2020. While the model detected early infection spikes and 

second waves, its reliance on published data limited its ability to fully assess government interventions 

(Cooper et al., 2020). Another study utilized the SIR model to analyze COVID-19 transmission dynamics, 

relying on real-world data and predefined compartment conditions. However, its assumptions of a well-

mixed population and constant transmission rates limit its ability to capture real-world complexities such 

as demographic and geographic variability (Wu, 2023). A group of researchers applied the SIR model to 

analyze COVID-19 spread in four regions of India, simulating the impact of a two-month nationwide 

lockdown on the contact rate. While the model provided insights into transmission dynamics, its reliance 

on short-term data and assumptions of a homogeneous population may limit its accuracy in capturing long-

term pandemic trends (Saxena et al., 2021). 

Furthermore, research simulated the COVID-19 epidemic in Nigeria using the SIR model, optimizing 

parameters with Maximum Likelihood Estimation and the Nelder-Mead algorithm. However, the predicted 

peak did not align with actual trends, likely due to unaccounted external factors influencing transmission 

dynamics (Duan, 2021). Another study opted the SIR model to forecast the COVID-19 epidemic in 

Malaysia, utilizing its compartmental structure to model disease spread. However, the model's assumptions 

of a closed population and constant transmission rates may limit its accuracy in capturing real-world 

variations in mobility, interventions, and reinfection risks (Zenian, 2022). Additionally, a study modified 

SIR model to forecast the COVID-19 epidemic in India, incorporating factors like flattening the curve, herd 

immunity, and dynamic population changes. However, potential limitations in model assumptions and 

unaccounted transmission variables may affect the accuracy of its projections (Venkatasen et al., 2020). 

Building upon these studies, this research employs the SIR model to analyze COVID-19 transmission 

dynamics in Malaysia. This study evaluates changes in infection rates, recovery patterns, and reproduction 

numbers by analyzing real-world COVID-19 data from the Johns Hopkins University COVID-19 

Dashboard (CSSE, 2024). The dataset includes reported cases, recoveries, and fatalities recorded in 

Malaysia. Additionally, key intervention phases, such as the Movement Control Order (MCO) and the 

Recovery Movement Control Order (RMCO), were examined to assess their impact on transmission 

dynamics. The data were systematically collected, ensuring consistency in tracking the progression of the 
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outbreak across different time periods. Unlike models that incorporate additional complex parameters, this 

study maintains the classical SIR structure while leveraging empirical data to assess the effectiveness of 

government-imposed measures in mitigating the epidemic’s spread. The findings provide valuable insights 

into how targeted interventions impact disease progression and inform future public health strategies. To 

achieve these objectives, the following section outlines the methodology employed in this study, detailing 

the dataset acquisition, parameter estimation, and evaluation techniques used to assess the spread of 

COVID-19 in Malaysia. 

3. METHODOLOGY 

3.1 SIR Model 

The SIR mathematical model, a powerful mathematical model for depicting infectious diseases, was 

developed by Kermack and McKendrick in 1927 (Moein et al., 2021). This section outlines the standard 

framework of the SIR model used to illustrate COVID-19 spread in Malaysia. Fig. 1 provides a schematic 

of the SIR model, which is employed to describe the dynamics of infectious disease transmission. The 

model consists of three compartments (Putra et al., 2019); (Mbuvha & Marwala, 2020). 

 

 

Fig. 1. The schematic diagram of the SIR Model. 

(i) Susceptible (S): Find the differences between before and after. 

(ii) Infected (I): Populations who currently have the infection and are capable of spreading it to others. 

(iii) Recovered (R): Populations who have previously been infected with the disease and have since 

recovered. They are no longer capable of transmitting the infection, but they have permanent 

immunity. 

The arrows in Figure 1 illustrate the flow of population between compartments. The evolution rate 

from the vulnerable to the diseased compartment is governed by the disease transmission rate. In contrast, 

the movement from the diseased to the recovered group is controlled by the recovery rate. The SIR model 

is a simple yet effective tool for analyzing infectious disease dynamics, including COVID-19. The 

equations for the SIR model based on ordinary differential equations (1-3) are stated as (Rahimi et al., 

2021). 

 

 𝑑𝑆

𝑑𝑡
=  −𝛽𝐼𝑆. (1) 

 

 𝑑𝐼

𝑑𝑡
=  𝛽𝐼𝑆 − 𝛾𝐼. (2) 

 

 𝑑𝑅

𝑑𝑡
=  𝛾𝐼. (3) 

 

The SIR model was chosen for its simplicity, practicality, and effectiveness in capturing disease spread 

dynamics in the early outbreak stages. The SIR model provides a simple yet reliable approach for analyzing 

and predicting pandemic trends, especially when data is limited. The model assumes a well-mixed 

population (Homogeneity) where each individual has an equal probability of interacting with others, 
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characterized by two key parameters: β (transmission rate) and γ (recovery rate) (Yunus et al., 2021). These 

parameters provide a fundamental understanding of the interplay between disease transmission and 

recovery. The core premise of the SIR model is that infected individuals interact with others, but infection 

can only spread to those who are susceptible. The likelihood of encountering a susceptible individual is 

proportional to their share of the total population, denoted as N=S+I+R, where N remains constant over 

time, implying no births, deaths, or migration, which simplifies computations. However, the model assumes 

no reinfection after recovery, which is a limitation when considering diseases with waning immunity or 

variants that may cause reinfection. Recognizing this limitation, ongoing research aims to extend the model 

to account for infections with loss of immunity. Despite this constraint, the SIR model's balance of 

simplicity and explanatory power makes it an invaluable approach for understanding and managing 

infectious disease dynamics, particularly in the context of emerging pandemics like COVID-19. According 

to United Nations (UN) data, the estimated population of Malaysia in mid-2023 was 34,308,525 people 

(Worldometer, 2024). The parameters of the mathematical model considered as Table 1 presents. 

 

Table 1. Parameters of SIR Model. 

Parameter Detail 

β (Beta) The rate at which the disease is transmitted. 

γ (Gamma) 
The rate at which the population recover from 
the infection. 

R0 (Basic Reproduction) 
The number of individuals who are infected by 
a single contagion case in a group where 
everyone is vulnerable. 

 

Therefore, the ratio of population magnitude (N) was approximated as 34,345,167 for the SIR 

modeling of Malaysia. When infection is absent or when I + R = 0, the substitution of S ≈ N into equation 

(2) leads to the derivation of the subsequent equation (4). 

 

 𝑑𝐼

𝑑𝑡
~𝐼(𝛽 − 𝛾). (4) 

 

Subsequently, through the process of integrating equation (4), we acquired the ensuing equation (5). 

 

 𝐼 = 𝐼𝑜𝑒(𝛽−𝛾)𝑡 . (5) 

3.2 Derivation of 𝛃 and m Values 

During the initial outbreak of the infection, a significant portion of the population is vulnerable, 

namely S ≈ N. As a result, the initial increase of Infection(t) takes place in an exponential manner, as shown 

in equation (6). 

 

 𝑑𝐼

𝑑𝑡
~ 𝑚𝐼. (6) 

 

Here, the constant term m = β - γ symbolizes the variance between the transmission and recovery 

rates, and we get equation (7). 

 

 𝐼( 𝑡 ) ∼ 𝐼0𝑒𝑚𝑡 . (7) 

 

The value of m can be approximated through log-plot data analysis, employing the least squares 

method and regression to achieve the optimal linear fit, equation (8). 
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 ln 𝐼 = 𝑚𝑡 + ln 𝐼0. (8) 

3.3 Derivation of γ Values 

Assume I(t) = I0 (constant). Then, we derive the succeeding equation (9). 

 

 𝑑𝑅

𝑑𝑡
= 𝛾𝐼𝑜. (9) 

 

Further, by incorporating equation (9), we derived the succeeding equation (10). 

 

 𝑅(𝑡) = 𝛾𝑡𝐼𝑜. (10) 

 

If suppose it takes t = T days to recover, then γ = 1/T. Therefore, we acquired the subsequent equation 

(11). 

 

 𝛾 ≈ 1/𝑇. (11) 

 

Here, T is the recovery epoch. By equation (3), for an alteration in the period of dt = a, it acquired the 

subsequent calculation as equation (12). 

 

 𝑅(𝑡 + 𝑎)

𝑎
=  𝛾𝐼. (12) 

3.4 Derivation of Basic Reproduction Number (R0) 

The basic reproduction number represents the proportion of the transmission rate to the recovery rate. 

This number is significant because it indicates how contagious an infectious disease is; an R0 larger than 1 

means the infection will probably expand through the inhabitants, while an R0 lower than 1 suggests the 

infection will ultimately die out. It can be mathematically termed as equation (13). 

 

 𝑅0 =
𝛽

𝛾
. (13) 

 

It characterizes the average sum of individuals that one diseased individual will pass the disease to. 

Based on R0, the following equations (14) and (15) can be derived. 

 

 1 −
1

𝑅0
(1 − 𝑙𝑛

1

𝑅0
) = 𝑖max   , (14) 

 

and, 

 

 1 −
1

𝑅0
(1 − 𝑙𝑛

1

𝑅0
) = 𝑖max    . (15) 

 

The R0 can be reduced if strict procedures of control and measures are implemented. Hence, we 

achieved the calculated parameters of the SIR model by the least square method and regression best line of 

fit. In this study, the dataset was obtained from the 2019 Novel Coronavirus Visual Dashboard, curated by 

the Johns Hopkins University Center for Systems Science and Engineering (JHU-CSSE). The SIR model, 

implemented in Python language and customized to analyze Malaysia's dataset, was executed on the Google 

Colab platform, leveraging its computational capabilities for efficient processing. Additionally, future dates 

for key milestones were calculated using an online date calculator to ensure precise temporal predictions 

and facilitate the interpretation of the model’s outcomes (BizCalcs, 2024). 



44 Basit et al. / Mathematical Sciences and Informatics Journal (2025) Vol. 6, No. 1 

https://doi.org/10.24191/mij.v6i1.4625

 

 ©Authors, 2025 

3.5 Derivation of Peak of Infection 

Determining the maximum infection rate and identifying the remaining susceptible population after 

the peak of infection is crucial for understanding the trajectory of an epidemic. By pinpointing the infection 

peak rate, we can gauge the most critical phase of the outbreak, which is essential for resource allocation 

and healthcare preparedness. Additionally, assessing the number of individuals still susceptible post-peak 

provides insights into potential risks for subsequent waves and helps in planning long-term public health 

strategies. These determinations enable a comprehensive evaluation of the epidemic's impact and the 

effectiveness of interventions implemented by evaluating equation (1) by equation (2), the achieved 

equation (16). 

 

 𝑑𝐼

𝑑𝑆
=

𝛾

𝛽
𝑁

1

𝑆
− 1. (16) 

 

By integrating both sides, the following equation (17) was obtained. 

 

 −𝑆 +
𝛾

𝛽
𝑁𝑙𝑜𝑔𝑆 + 𝐶 = 𝐼, 𝐶 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (17) 

 

At the beginning of infection, the ratio of infection in equation (17) is critically low, Hence, S≈N 

(equal total size of population). Therefore, S~N, I~0 and t=0. Hence, by integrating these ratios into 

equation (17), the derived equation (18). 

 

 𝑁 (1 −
𝛾

𝛽
𝑙𝑛𝑁) = 𝐶. (18) 

 

By substituting the value of C from equation (18) into equation (17), we obtained the following 

equation (19). 

 

 
𝑁 − 𝑆 +

𝛾

𝛽
𝑁𝑙𝑛

𝑆

𝑁
= 𝐼. (19) 

 

Equation (19) holds for all time points throughout the outbreak. Initially, the number of infected 

individuals (I) follows an exponential growth pattern, reaches a maximum, and then gradually declines 

toward zero. To analyze the dynamics, it is essential to determine the proportion of the infected population 

at the peak (Imax) and the fraction of the population that remains susceptible and has not yet contracted the 

disease. Equations (2) and (19) represent the differential equation describing the infection rate and its 

corresponding solution, respectively. To, we must undertake S=Ns, I=Ni, and R=Nr. Then, s, r and I denote 

the ratio of total infected, susceptible and recovered cases. Hence, the achieved equations (20) and (21). 

 

 𝑑𝑖

𝑑𝑡
= 𝑖(𝛽𝑠 − 𝛾), (20) 

 

and, 

 1 − 𝑠 +
𝛾

𝛽
𝑙𝑛𝑠 = 𝑖. (21) 

 

At the peak infection, di/dt=0, susceptible cases are achieved by the equation (22). 

 

 
𝑠 =

𝛽

𝛾
 . (22) 
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By integrating equation (22) into equation (21), the achieved equation (23). 

 

 1 +
𝛾

𝛽
(𝑙𝑛

𝛾

𝛽
− 1) = 𝑖𝑚𝑎𝑥. (23) 

 

The fraction of infected individuals at the highest significantly decreased during each lockdown period 

in Malaysia. Now, we need to determine 𝑆𝑖𝑛𝑓 = lim
𝑡→∞

𝑆(𝑡), which represents the percentage of people who 

remain susceptible after the infection has subsided. It's important to note that i=0 as t approaches infinity at 

the conclusion of the infection. Consequently, equation (21) can be reformulated as equation (24). 

 

 1 − 𝑠 +
𝛾

𝛽
𝑙𝑛𝑠 =  0. (24) 

 

Equation (21) can be resolved statistically to determine the rate of ‘s’. Using the dataset from 

Malaysia, we calculated the values of Sinf, representing the remaining susceptible cases. These calculations 

provide valuable insights into the peak infection rate and the remaining susceptible population after the 

epidemic has subsided. By determining the peak infection, public health officials can better allocate 

resources and prepare for future waves of the disease. Additionally, understanding the proportion of 

susceptible individuals Sinf at the conclusion of the outbreak is critical for planning long-term strategies 

aimed at mitigating future transmission and enhancing vaccination campaigns. The application of this 

model to Malaysia's COVID-19 data offers essential guidance in evaluating the effectiveness of public 

health interventions and predicting potential future risks. 

4. RESULTS AND DISCUSSION 

4.1 Derivation of Peak of Infection 

Table 2 presents the experimental results of the spread of infection, recovery and basic reproduction 

number during the Movement Control Order (MCO) period. 

Table 2. Calculated Parameters of SIR model by Least Square Method for MCO. 

Phase Start Date End Date Average (β) Average (γ) Average (R0) Value of m (β-γ) 

MCO Phase 18-Mar-20 3-May-20 0.0806 0.0309 2.607 0.0497 

       

During the MCO phase in Malaysia, implemented from 18 March 2020 to 3 May 2020, the infection 

dynamics were significantly influenced by stringent public health measures aimed at limiting the spread of 

COVID-19. The calculated parameters of the SIR model during this period reveal an average transmission 

rate (β) of 0.0806 and a recovery rate (γ) of 0.0309, resulting in a basic reproduction number (R0) of 2.607. 

This indicates that, on average, one infected individual had the potential to infect approximately 2.6 others 

during the early MCO phase. However, the enforcement of social distancing measures, travel restrictions, 

and public awareness campaigns likely contributed to the gradual reduction of infection and the difference 

between the rate of infection and recovery rate, denoted as m (0.0497), as shown in Fig. 2. 
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Fig. 2. Estimated SIR model parameters during the MCO phase 

It was observed that 90.52% of the population remained susceptible to COVID-19 by the end of this 

period, as shown in Table 3. 

Table 3. Remaining Susceptible Population During the MCO Phase. 

Phase Start Date End Date Sinf (%) 

MCO Phase 18-Mar-20 3-May-20 90.52 

    

Malaysia's total population of 34,345,167 translates to approximately 31,092,820 individuals who 

have not yet contracted the virus. The high percentage of remaining susceptible individuals underscores the 

effectiveness of the MCO in curbing the spread of infections during its enforcement. By limiting mobility, 

enforcing social distancing, and promoting public health measures, the MCO successfully reduced exposure 

to the virus and prevented a large-scale outbreak. However, the significant proportion of susceptible 

individuals also highlighted the continued risk of future waves of infection if restrictions were lifted 

prematurely or if vaccination campaigns were delayed. This emphasizes the importance of sustained public 

health strategies to protect the uninfected population and achieve broader immunity. The data presented in 

Table 4 provides insights into the estimated peak infection dynamics during the MCO phase. 

Table 4. Estimated Peak Infection Metrics During the MCO Phase. 

Phase Start Date End Date Imax (%) Estimated Infection peak 

MCO Phase 18-Mar-20 3-May-20 24.9 9-Oct-20 

 

An infection peak (Imax) value of 24.9% suggests that nearly one-quarter of the population would be 

actively infected at the peak under the continued MCO measures. The forecasted peak infection date of 9th 

October 2020 aligns with the model's projections, as shown in Fig. 3, emphasizing the critical period of the 

outbreak's progression. This estimation underscores the importance of sustained control measures in 

mitigating the spread of infection and preventing healthcare system overburdening. It highlights the 

necessity of ongoing public health interventions to manage and reduce the epidemic's severity. 
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Fig. 3. SIR Model Simulation for the MCO Phase, showing the dynamics of Susceptible, Infected, and Recovered 
populations over time. 

4.2 Recovery Movement Control Order 

Table 5 presents the experimental results of the spread of infection, recovery and basic reproduction 

number during the Recovery Movement Control Order (RMCO) period. 

 

Table 5. Calculated Parameters of SIR model by Least Square Method for RMCO. 

Phase Start Date End Date Average (β) Average (γ) Average (R0) Value of m (β-γ) 

RMCO Phase 10-Jun-20 31-Mar-21 0.0880 0.0518 1.698 0.0361 

 

During the RMCO phase, spanning from 10th June 2020 to 31st March 2021, the parameters of the 

SIR model provided significant insights into the dynamics of COVID-19 spread and recovery. The average 

transmission rate (β) was recorded at 0.0880, while the average recovery rate (γ) was 0.0518, resulting in a 

net growth rate (m=β-γ) of 0.0361. The basic reproduction number (R0) during this phase dropped 

significantly to 1.698, compared to the 2.607 observed during the MCO phase. This decline reflects 

improved control of the infection spread due to effective public health interventions, including social 

distancing measures, partial reopening under strict guidelines, and public compliance with health 

advisories. The reduced R0 indicates that, on average, each infected individual was transmitting the virus 

to fewer than two others, signifying a shift toward containment of the epidemic. Additionally, the smaller 

value of m suggests a closer balance between infection and recovery rates, further supporting the view that 

the RMCO measures successfully mitigated the pandemic's progression while allowing for some degree of 

normalcy to resume. These findings highlight the importance of adaptive, data-driven strategies in 

managing the spread of infectious diseases. 

These results indicate a noticeable reduction in the net growth rate compared to earlier phases, 

reflecting the impact of eased restrictions coupled with sustained public health measures. The lower value 

of m suggests that while infections continued to occur, the balance between transmission and recovery 

leaned more favorably toward recovery during this phase. The RMCO measures allowed for a degree of 

economic and social activity to resume while maintaining sufficient control over the epidemic's trajectory, 

emphasizing the effectiveness of a phased and adaptive approach to pandemic management. Figure 4 

highlights the calculated graph of the m value. 
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Fig. 4. Estimated SIR model parameters during the RMCO phase 

It was observed that 68.97% of the population remained susceptible to COVID-19 by the end of this 

period, as shown in Table 6. 

 

Table 6. Remaining Susceptible Population During the RMCO Phase. 

Phase Start Date End Date Sinf (%) 

RMCO Phase 10-Jun-20 31-Mar-21 68.97 

 

The percentage of the population that remained susceptible to infection Sinf dropped significantly to 

68.97%. This indicates a substantial reduction in the susceptible population compared to the 90.52% 

recorded during the earlier MCO phase. The decline in the susceptible population during the RMCO phase 

highlights the ongoing transmission and progression of infections, albeit at a slower pace due to the partial 

reopening and improved public health measures. The reduction in susceptibility suggests that more 

individuals either recovered from infection or developed immunity during this period. The 31.03% of the 

population that had experienced an infection or gained immunity underscores the impact of the extended 

timeline and the modified control measures under RMCO. While the relaxed restrictions allowed for 

economic recovery and social activities, the data emphasizes the importance of continued vigilance to 

prevent further outbreaks. This insight provides a basis for understanding the effectiveness of RMCO in 

balancing infection control with societal and economic needs. The data presented in Table 7 provides 

insights into the estimated peak infection dynamics during the RMCO phase. 

 

Table 7. Estimated Peak Infection Metrics During the RMCO Phase. 

Phase Start Date End Date Imax (%) Estimated Infection peak 

RMCO Phase 10-Jun-20 31-Mar-21 1.698 11-Dec-20 

 

The estimated peak infection metrics reveal significant insights into the epidemic's progression under 

the modified control measures. The peak infection rate (Imax) during this phase was significantly lower, at 

1.698%, compared to the 24.9% observed during the earlier MCO phase. The estimated peak of infection 

occurred on 11th December 2020, a few months after the phase began. This reduction in the peak infection 
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rate reflects the effectiveness of RMCO policies in curbing the virus's spread while gradually resuming 

economic and social activities. The low Imax suggests that a combination of public health measures, 

including mask mandates, physical distancing, and targeted testing and tracing, helped to mitigate the 

outbreak's intensity during this phase. Furthermore, the delayed timing of the peak infection compared to 

the earlier phase highlights the extended timeline over which infections were controlled and managed. 

Figure 5 displays the SIR simulation during the RMCO phase. 

 

 

Fig. 5. SIR Model Simulation for the RMCO Phase, showing the dynamics of Susceptible, Infected, and Recovered 
populations over time. 

The RMCO phase's metrics underscore the importance of adapting public health strategies to maintain 

a balance between reopening and managing infection risks. By achieving a lower infection peak and 

spreading the infections over a longer period, the healthcare system was better equipped to manage cases, 

ensuring resources were not overwhelmed while minimizing disruptions to daily life. An unexpected 

observation was the substantial proportion of the population that remained susceptible by the end of both 

phases as 90.52% in the MCO and 68.97% in the RMCO. While high susceptibility aligns with strict 

intervention success, it also indicates that herd immunity had not been achieved, leaving a large fraction of 

the population vulnerable to future outbreaks. Additionally, despite an increase in the average transmission 

rate (β) from 0.0806 in MCO to 0.0880 in RMCO, the net growth rate (m) dropped significantly due to a 

higher recovery rate (γ). This suggests that although infections continued, improved medical interventions, 

public awareness, and behavioral adaptations contributed to a more balanced epidemic trajectory. 

5. CONCLUSION 

This study provides a comprehensive analysis of COVID-19 transmission dynamics in Malaysia using the 

Susceptible-Infected-Recovered (SIR) model, offering critical insights into the efficacy of public health 

interventions during the early stages of the pandemic. By evaluating the Movement Control Order (MCO) 

and Recovery Movement Control Order (RMCO) phases, we observe significant variations in infection 

rates, recovery dynamics, and reproduction numbers. The results underscore the effectiveness of these 

interventions in curbing the spread of the virus, with a marked reduction in the basic reproduction number 

(R0) during the RMCO phase compared to the MCO phase.  
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Despite these efforts, the model highlights a substantial portion of the population remaining 

susceptible, indicating the ongoing risk of further outbreaks. The SIR model proved to be a valuable tool 

in understanding the epidemic's progression, offering an accessible yet powerful framework for decision-

making in public health management, especially when limited data is available. However, underreporting 

of cases, particularly among asymptomatic or mildly symptomatic individuals, can lead to an 

underestimation of infection rates, affecting the accuracy of predictive models. Additionally, delays in data 

collection and reporting may introduce temporal distortions, making real-time model predictions less 

reliable. The findings underscore the importance of adaptive, phased intervention strategies in pandemic 

management. The substantial reduction in R0 during RMCO highlights the potential of combining targeted 

public health measures with gradual reopening to balance economic and social activities while maintaining 

control over the epidemic.  

Policymakers can use these insights to optimize future response strategies, ensuring that public health 

interventions remain flexible and responsive to real-time data. Moreover, the high percentage of susceptible 

individuals by the end of both phases suggests the need for complementary measures such as widespread 

vaccination and enhanced testing. Without these, lifting restrictions too soon could lead to resurgence, as 

seen in several regions that relaxed measures prematurely. This reinforces the importance of integrating 

forecasting models into decision-making frameworks to anticipate outbreak trends and allocate resources 

effectively. 
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