UNIVERSITI TEKNOLOGI MARA

A STUDY ON THE EFFECT OF ANTHOCYANIN PIGMENT FROM PURPLE CABBAGE FOR FOOD PACKAGING

NOR HAFIZA IZZATI BINTI WAHAB

Thesis submitted in fulfillment of the requirements for the degree of

Bachelor Eng. (Hons)

Faculty of Chemical Engineering

July 2017

ACKNOWLEDGEMENT

First of all, thank you to my supervisor, Dr. Siti Noor Suzila binti Maqsood Ul-Haque for her supervision and constant supports. Her valuable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research. Also, thanks to Universiti Teknologi Mara for having and allowing me to perform and submit my final year project. A special thanks to all lab assistants of Faculty Chemical Engineering whose gave the permission to use all required machinery and the necessary materials to complete this research. I would also like to acknowledge with much appreciation to my beloved parents, Wahab bin Abdullah and for their support either in moral support and prayers. Sincere thanks to all my friends especially to my teammates, whose help me to assemble the parts and gave suggestion about my research. Last but not least, my deepest gratitude goes to those who indirectly contributed in this research. Your kindness means a lot to me. Thank you very much.

ABSTRACT

In developing countries, food spoilage and increase in pollution of solid waste, especially from food packaging. Basically, this problem not only affect the damaging to human being, but also towards environment. Extraction process is used for extracting the desired compound from its natural source, as materials in food packaging technology. Purple cabbage that contain high amount of anthocyanin can be utilized in food packaging production as it bring unlimited number of economic and environmental benefits to the industrial of food. The purposes of this research is to extract anthocyanin pigment from purple cabbage and to study the effect of anthocyanin in food packaging towards storage condition, food product and mechanical properties. Two different type of solvents were used to compare the amount of anthocyanin extract which is distilled water and distilled water-ethanol. The peak for anthocyanin in Fourier transform infrared (FT-IR) from distilled water-ethanol solvent is at 1217.25cm-1. This peak is higher compared to the solvent that used distilled water only. From UV-vis region spectra, both food packaging that contain purple cabbage extract were incorporated into agar and starch films. Based on the effect on food sample, pH indicator film showed the highest colour changes which is from purple to pink when there is a presence of ethanol in the solvent. For the effect of storage temperature, food packaging in temperature 60°C become dried and brittle while food packaging in temperature 4°C still fresh. In term of mechanical properties, the elasticity of film that contain anthocyanin using distilled water-ethanol as solvent is decrease from 0.2813 MPa in day 1 to 0.0341 MPa in day 15 while the elasticity of film that contain anthocyanin using distilled water only as solvent also decrease from 0.4625 MPa in day 1 to 0.0313 MPa in day 15. Overall, pH indicator films that contain anthocyanin from purple cabbage extract has high potential to be used as one of the material in food packaging in order to detect food spoilage since they have reliable response to pH and temperature.

TABLE OF CONTENTS

	Page
PLAGIARISM FORM	ii
AUTHOR'S DECLARATION	iii
SUPERVISOR'S CERTIFICATION	iv
HEAD OF PROGRAM' CERTIFICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xii i
LIST OF ABBREVIATIONS/NOMENCLATURE	xiv
CHAPTER ONE: INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Scopes of Researches	3
CHAPTER TWO: LITERATURE REVIEW	
2.1 Introduction	5
2.2 Introduction of Cabbage	5
2.2.1 Purple cabbage	6
2.2.2 Anthocyanins in purple cabbage	8
2.3 Introduction of Food Packaging	10
2.3.1 Functions Food Packaging	10
2.3.2 Variety type of food packaging	11
2.3.2.1 Active packaging	11
2.3.2.2 Intelligent packaging	12

CHAPTER 1 INTRODUCTION

1.1 RESEARCH BACKGROUND

Recently, development of polymer was used to produce materials like glass or tinplate as food packaging to replace traditional method. Yet, in packaging, surgery, catering process, there is an issue in hygiene if use for a long period of time. (Souza et al., 2012). This is because high amount of waste produced, where packaging of food is one of the considerable part which some cannot degrade naturally thus remain for a long period of time without decompose.

At present time, food packaging becomes the major concern within the consumer because the function of food packaging itself must act as a protector towards food products. Increasingly the growth of technology, the changes in consumer preferences and demand for safe and high quality food products also increases. This situation lead to innovative developments and improvement of packaging materials.

According to Anupama, Pramod and Rishabha (2011), food packaging was used as to distinguish certain product and the materials used must be in environmental considerations. For example, it does not generate any bad effect on quality of product. The important factor that should be considered is low in price, easy to fabricate and its materials is available.

Food packaging with low capability to protect its product will give bad effect to the product inside that package. As a result, consumers may have problem regarding on how to store or want to keep the food product in a high period of time without losing its quality or freshness of product. They also do not know either the food product is still in good condition or not inside that closed packaging.

One type of intelligent food packaging system is visual pH indicator, due to several advantages like small size, great sensitivity, and low in costing (Choi et.al, 2016). In this research, the method produced and characteristics of intelligent food packaging is to be