

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

PHOTOELECTROCHEMICAL STUDY OF Pt DOPED Bi₂WO₆ and SrTiO₃ PHOTOCATALYST FOR PHOTOCATALYTIC DEGRAATION OF REACTIVE RED 4 (RR4) DYE

Name : AZUIERA BT AHMAD ZULANI

Student ID : 2021471156

Program : AS245 Course code : FSG671

Mobile Phone : 016-3864125

E-mail : 2021471156@student.uitm.edu.my

* Please attach the Turnitin summary report, with your name clearly stated, at the end of your report and submit it together.

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : Assoc. Prof. Dr. Wan Izhan Nawawi Bin Wan Ismail

Date : 14 February 2025

Turnitin Similarity % : 8%

Signature :

ASSOC, PROF. DR. WAN IZHAN NAWAWI BIN WAN ISMAIL Faculty of Applied Sciences University Teknology MARA Cawangan Peris

PHOTOELECTROCHEMICAL STUDY OF Pt DOPED Bi₂WO₆ AND SrTiO₃ PHOTOCATALYST FOR PHOTOCATALYTIC DEGRADATION OF REACTIVE RED 4 (RR4) DYE

AZUIERA BINTI AHMAD ZULANI

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

FEBRUARY 2025

PHOTOELECTROCHEMICAL STUDY OF Pt DOPED Bi₂WO₆ AND SrTiO₃ PHOTOCATALYST FOR PHOTOCATALYTIC DEGRADATION OF REACTIVE RED 4 (RR4) DYE

AZUIERA BINTI AHMAD ZULANI

Final Year Project Proposal Submitted in
Partial Fulfilment of the Requirements for the
Degree of Bachelor of Sciece (Hons.) Materials Science and Technology
In The faculty of Applied Sciences
Universiti teknologi MARA

FEBRUARY 2025

ABSTRACT

PHOTOELECTROCHEMICAL STUDY OF Pt DOPED Bi₂WO₆ AND SrTiO₃ PHOTOCATALYST FOR PHOTOCATALYTIC DEGRADATION OF REACTIVE RED 4 (RR4) DYE

Environmental pollution has all over the place with consequences for human health, living organisms, and ecosystems. To solving this problem, it is necessary to ensure the total transformation of the parent harmful compounds is complete in order to eliminate their toxicity and persistence. Bi₂WO₆ and SrTiO₃ having less photocatalytic performance because of the several factors. There is several modifications have been introduced to make these photocatalysts become more active under photocatalytic process. Photocatalysis provides a promising solution to this problem. This study investigates the effectiveness of Pt doped Bi₂WO₆/SrTiO₃ composites for photocatalytic dye degradation in wastewater. First and foremost, of Bi₂WO₆/SrTiO₃ composite was prepared by the different ratios. The methods involve of mixing and calcination of of Bi₂WO₆/SrTiO₃ at 400°C for 2 h in tube furnace. Then, to fabricate Bi₂WO₆/SrTiO₃, Platinum was deposited onto the Bi₂WO₆/SrTiO₃ composite using the photodeposition technique. RR4 dyes was used as model pollutant to examine photocatalytic activity of Pt doped Bi₂WO₆/SrTiO₃. FTIR and PEC were used for photodegradation study. In the FTIR, it was observed that functional groups presence in SrTiO₃, Bi₃WO₆, Bi₃WO₆/SrTiO₃ and Pt dope Bi₃WO₆/SrTiO₃. While for PEC analysis, LSV, EIS and CA demonstrated that SrTiO₃, Bi₃WO₆, Bi₃WO₆/SrTiO₃, Pt dope Bi₃WO₆/SrTiO₃ has high current density under light, low charge transfer resistance under light and high photocurrent response, respectively. For photocatalytic degradation, the highest K value among the sample is Bi₃WO₆/SrTiO₃ (70:30) with value 0.0016.

TABLE OF CONTENTS

	PAGES
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF SYMBOLS	viii
LIST OF ABBREVIATIONS	ix
CHAPTER 1: INTRODUCTION	
1.1 BACKGROUND OF STUDY	1
1.2 PROBLEM STATEMENT	3
1.3 SIGNIFICANCE OF STUDY	4
1.4 OBJECTIVE OF STUDY	5
1.5 SCOPE AND LIMITATION OF STUDY	6
CHAPTER 2 : LITERATURE REVIEW	
2.1 Photocatalysis	7
2.2 Bi ₂ WO ₆ as semiconductor	9
2.3 SrTiO ₃ as semicondutor	11
2.4 Z-Scheme Heterojunction	12
2.4.1 Types of heterojunction	
2.5 Photoelectrochemical	14
2.5.1 Linear Sweep Voltammetry (LSV)	17
2.5.2 Electrochemical Impendence Spectroscopy (EIS)	19
2.5.3 Mott-Schottky Plot (MS)	21
2.5.4 Chronoamperometry (CA)	22
2.6 Photocatalytic degradation of pollutant	23
2.7 Reactive Red 4 (RR4) dye	25
CHAPTER 3: METHODOLOGY	
3.1 Introduction	27
3.2 List of Chemical, Apparatus and Instruments	28
3.3 Preparation of Bi ₂ WO ₆	29
3.4 Preparation of SrTiO ₃	29
3.5 Preparation of Bi ₂ WO ₆ /SrTiO ₃	30