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ABSTRACT

The number of cryptocurrency investors has grown rapidly compared 
to conventional financial asset investors. This condition needs attention 
considering the high price volatility of cryptocurrency without any 
underlying transactions. This research aimed to provide empirical evidence 
for the best price volatility prediction model. The research selected two 
cryptocurrencies, namely Bitcoin and Ethereum, because they have the 
largest capitalization. The data used was the daily price of cryptocurrency 
from January 1, 2020 to June 30, 2023. Data from 1 January 2020 to 31 
December 2022 was used to create a prediction model, and data from 
1 January 2023 to June 30, 2023 was used to test the accuracy of the 
prediction model. Tests were carried out to determine which volatility 
model provided the best validity and smallest error between GARCH and 
EWMA. The result showed that EGARCH (1,1) model was proven to 
have the smallest error value compared to the GARCH (1,1) and EWMA 
model. The research results are useful for investors who have a preference 
for carrying out technical analysis to minimize risk by using EGARCH 
(1,1). Further research should carry out cryptocurrency portfolios as each 
cryptocurrency has different price volatility. 
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INTRODUCTION

The emergence of digital assets has coincided with advancements in 
technology. Cryptocurrency is often regarded as a popular type of digital 
asset. One of the factors contributing to its widespread appeal is the 
comparatively superior rate of return in comparison to traditional investment 
instrument. The increasing number of individuals engaging in bitcoin 
investment aligns with the rise in transaction value on an annual basis. In 
addition to this, the substantial appreciation of cryptocurrencies within a 
short time period has also prompted inexperienced investors to allocate 
funds towards crypto assets.

Teh et al. (2020) found that the accounting treatment of cryptocurrencies 
is subject to the effect of the functions and rules associated with these digital 
assets, and that there is a lack of universally accepted norms controlling their 
accounting practises. Investors greatly value information transparency as 
it has a direct impact on investment liquidity, which refers to the ability to 
convert investments into cash based on the prevailing supply and demand 
dynamics (Utami et al., 2020).

The use of blockchain technology as the underlying framework 
for cryptocurrency provides transparency functionalities that enable the 
tracing of the sources of those assets (Kshetri, 2018). In addition to this, 
cryptocurrency is often recognised as high-risk investments characterised 
by substantial market volatility due to their notable potential for generating 
big returns (Maciel, 2021).

The high investment interest needs careful consideration, particularly 
in light of the distinctive attributes of crypto assets, which exhibit significant 
volatility. This volatility therefore amplifies the risk and possible losses 
associated with investing in crypto assets. The potential and risks associated 
with cryptocurrency investment encompass several factors. Firstly, market 
risk emerges due to the inherent volatility of asset prices in the absence of 
an underlying transaction, making valuation challenging. Secondly, credit 
risk may arise if public investment funds are sourced from loans provided 
by financial institutions. Lastly, there is a risk of disintermediation as the 
use of funds for investment in cryptocurrencies evolves, potentially leading 
to a reduction in financing for the real sector, particularly if transaction 
volumes experience substantial growth (Said, 2021).
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Research on investment risk may be conducted by using both a 
fundamental economic approach and a technical approach that relies on 
time series data. According to Utami and Nugroho (2017), investors with 
a short-term orientation tend to exhibit a preference for using technical 
approach. The development of an effective risk prediction model is crucial 
in order to enable investors to effectively manage and reduce potential risks.

This study empirically investigated the properties of cryptocurrency 
price volatility models prevalent in global marketplaces, in light of prior 
studies that have yielded inconsistent findings. The selected cryptocurrencies 
for analysis were Bitcoin and Ethereum, which are widely recognised as 
the most prominent and widely used cryptocurrencies globally. These two 
cryptocurrencies also exhibit the highest market capitalization compared 
to other cryptocurrencies available in the market.

The primary aim of the research was to compare the effectiveness of the 
GARCH volatility estimation model with the EWMA volatility estimation 
model. This study sought to determine which of these models performed 
better in terms of volatility estimation. The novel aspects of this research 
are concerning (1) the measurement of price volatility which is used daily 
price volatility based on the opening price, the lowest price, the highest price 
and the closing price of cryptocurrency; (2) comparing the performances 
of GARCH-type models in capturing volatility: a) GARCH (0,1); GARCH 
(1,0); GARCH (1,1), b) EGARCH (0,1); EGARCH (1,0); EGARCH (1;1).

The subsequent section is denoted as the second element, namely 
literature review. This component encompasses an extensive examination of 
literature related to the research topic. The methodology section provides a 
comprehensive explanation of the techniques used for data collection and the 
general methodology employed in the research. The results and discussion 
section present and discuss the findings of the study. The conclusion section 
provides the findings and implications of the study, as well as propose 
recommendations for future research.



156

MANAGEMENT AND ACCOUNTING REVIEW, VOLUME 24 NO 1, APRIL 2025

LITERATURE REVIEW

The framework of enterprise risk management (ERM) emphasizes the 
importance of employing a combination of qualitative and quantitative 
risk assessment methodologies. The likelihood and impact of risks are 
assessed as a basis for determining how to manage them.  The management 
selects appropriate actions to align risks tolerance and risk appetite. The 
management responses can be seen in terms of four main responses: reduce, 
accept, transfer, or avoid risk (COSO, 2004).

The mathematical model that is currently widely applied in the field 
of risk management, especially regarding risky events that rarely occur, 
is Extreme Value Theory (EVT). With the growth of various financial 
products in various countries, will certainly increase the volume of financial 
trading, which will ultimately increase extreme events in the financial 
sector. Calculating the maximum risk of loss in financial markets will be 
a very important issue in current market conditions. The EVT provides 
a statistical calculation model of the stochastic (uncertain) behaviour of 
financial markets.

As stated by McNeil et al. (2005), the financial market produces time 
series data that has a fatter distribution tail; that is, the tail of the distribution 
falls slowly when compared to the standard normal distribution. This shows 
that the opportunity for extreme values of financial risk to occur will be 
greater than with normally distributed data. Approaches using conventional 
methods, such as normal assumptions on data, are no longer relevant in 
data analysis.

The EVT can be used as a method for handling financial data that has 
a fat tail. It has been widely used in calculating financial risks, especially 
in estimating extreme risks, such as financial crises, extreme stock price 
spikes, or credit risk defaults, such as by Mancini and Trojani (2010), Onour 
(2010), Gilli and Kellezi (2006), and Dacorogna et al. (2001).

Elsayed et al. (2022) stated that cryptocurrencies such as Bitcoin 
and Litecoin are suitable as hedging tools to fight inflation and currency 
devaluation. The research findings of Zhang and Li (2021) demonstrated 
that, despite the high volatility of crypto assets, investors still need to be 
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aware of their liquidity in order to comprehend the mechanism of price 
formation and to influence their rationality when making decisions to invest 
in cryptocurrencies.

Cryptocurrency assets as part of the investment instruments can 
improve the performance of an investment portfolio (Youssef et al., 2022). 
According to Uddin et al. (2020), despite having a high level of volatility, 
crypto assets, particularly Bitcoin, can be considered an innovative asset that 
investment managers can use to diversify their portfolios, use as a hedging 
tool, and reduce risks in the capital market.

Volatility can also be considered in terms of how sensitive or uncertain 
financial time series data is. This means that investors may face volatility 
when they trade on the stock market. The quantity is shown as the standard 
deviation of the rate of change of the financial time series data that make up 
the volatility (Yohannes & Hokky, 2003). Cryptocurrency price volatility 
represents the return risk of the price of that cryptocurrency. The higher 
the volatility, the lower the ‘certainty’ of an investment’s rate of return is. 
During the COVID-19 pandemic and the recovery period, there has been an 
increase in volatility and a decrease in returns on the capital market (Fitri 
& Surjandari, 2022; Setiany et al., 2023). Similar conditions also occur in 
cryptocurrency investments.

Volatility estimation models that are constant over time 
(homoscedasticity) generally use the Simple Standard Deviation 
volatility estimation model. Meanwhile, for volatility that is not constant 
(heteroscedasticity), the GARCH volatility estimation model or the EWMA 
volatility estimation model is generally used.

When analysing time series data, ARCH and GARCH are frequently 
applied to estimate volatility. In 1982, Eagle was the first proponent of the 
ARCH paradigm. Bollerslev released the GARCH model in 1986, essentially 
an expanded iteration of the ARCH model. The objective of this model is 
to generate forecasts for time series data, taking conditional volatility into 
consideration. We incorporated both the values of the dependent variable 
and the independent variables from the previous period to determine the 
variance of the dependent variable.
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EWMA is a volatility forecasting approach that estimates future 
volatility where current observational data is given a greater weight than 
past data. This weighting is based on the assumption that current data 
provides better information on market conditions compared to past data 
(Marrison, 2002). The volatility forecast can be interpreted as the weighted 
average of the forecast volatility of the previous period and the square of 
the current return.

The Table 1 below provides a concise summary of the most relevant 
scholarly work on the modelling of market risk in the cryptocurrency 
domain, with a specific emphasis on forecasting volatility.

Table 1: State of the Art
Name
(Year)

Objects
(Cryptocurrency)

Sample
Period

Model’s
Approach

Best Models
(Results)

Alexander & 
Dakos (2023)

BTC, ETH, XRP, 
LTC

2015 - 2021 GARCH, EGARCH, 
EWMA, AEWMA

AEWMA, 
EGARCH

Bergsli et al.
(2022)

BTC 2011 - 2018 GARCH, EGARCH, 
GJRGARCH, IGARCH, 
MSGARCH, APARCH, 
HAR

EGARCH, 
APARCH

Bruhn & Ernst
(2022)

14 large-cap 
coins (exclude 
stablecoins)

2017 - 2022 GARCH, POTM, GPD, 
Copula, MonteCarlo

GARCH, POTM, 
GPD, Copula, 
MonteCarlo

Yahaya et al.
(2022)

BTC, ETH, BNB 2017 - 2021 ARCH, GARCH, 
EGARCH, TGARCH, 
PARCH, CGARCH, 
IGARCH, ARIMA

CGARCH

Maciel
(2021)

BTC, ETH, XRP, 
LTC, XMR, DASH

2013 - 2018 MSGARCH, EGARCH, 
TGARCH

MSGARCH

Malladi & 
Dheeriya
(2021)

BTC, XRP 2013 - 2019 ARMAX, GARCH, VAR, 
Granger

ARMAX, 
GARCH, VAR, 
Granger

Shen et al.
(2021)

BTC 2013 - 2018 SMA, GARCH, RNN RNN

Silahli et al.
(2021)

BTC, XRP, LTC, 
DASH

2014 - 2019 EQMA, EWMA, GARCH GARCH

Chen & So
(2020)

BTC, ETH, Gold 2010 - 2019 GARCH, Copula GARCH, Copula

Ječmínek et 
al. (2020)

BTC, ETH, XRP 2013 - 2019 GARCH, EWMA, VaR, 
MonteCarlo

MonteCarlo 
(VaR)

Liu et al.
(2020)

BTC, ETH, LTC 2019 EWMA EWMA

Catania et al.
(2019)

BTC, ETH, XRP, 
LTC

2015 - 2017 EWMA, TVPVAR EWMA, TVPVAR

Naimy & 
Hayek (2018)

BTC 2013 - 2016 GARCH, EGARCH, 
EWMA

EGARCH
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Table 1 summarises the literature, which shows that the most often 
used models were the symmetric GARCH model proposed by Bollerslev 
(1986) and asymmetric models like the EGARCH model developed by 
Nelson (1991). The RiskMetricsTM EWMA model developed by Longerstaey 
& Spencer (1996) was widely used in financial market applications 
because to its simplicity and user-friendly nature. Several research articles 
have focused on evaluating its forecasting accuracy using conventional 
cryptocurrency data. Catania et al. (2019) and Silahli et al. (2021) evaluated 
the predictive accuracy of the EWMA volatility model. Silahli et al. (2021) 
also investigated a more basic equally-weighted moving average (EQMA) 
model as a reference point. Liu et al. (2020) examined many score-driven 
exponentially weighted moving average (EWMA) model that were built 
upon the Generalised Autoregressive Score (GAS) model framework.

Modelling cryptocurrencies volatility is important because it is related 
to the investment portfolio strategy formed by the investment manager. 
Malladi and Dheeriya (2021) stated that the returns of global stock markets 
and gold do not have a causal effect on the returns of Bitcoin. However, 
the research results demonstrated that the returns of Ripple have a causal 
effect on Bitcoin. Ječmínek et al. (2020), on the other hand, stated that 
the best model for estimating risk for cryptocurrencies is the Monte Carlo 
simulation model. Bruhn and Ernst (2022) also complemented this by stating 
that the possibility of a risk reduction strategy through portfolio formation 
in cryptocurrency is only promising to a certain extent and cannot reduce 
the level of risk significantly.

 According to Naimy and Hayek (2018), the EGARCH model exhibited 
superior performance compared to both the GARCH and EWMA models, 
both within and beyond the sample period, with increased accuracy. 
Additionally, Shen et al. (2021) reported that, on average, the RNN model 
exhibited superior forecasting performance compared to GARCH and 
EWMA. However, it loses its effectiveness in recording exceptional events 
in the Bitcoin market. In contrast, Alexander and Dakos (2023) asserted 
that the EWMA model approach demonstrated a comparable accuracy to 
the GARCH model when it came to predicting value at risk.

Chen and So (2020) in their research again proved that the GARCH 
model, especially the Copula-GARCH model, provided better performance 
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than the traditional model. However, for a portfolio consisting of Bitcoin 
and gold, the traditional model provided better performance.

In their later study, Bergsli et al. (2022) concluded that the EGARCH 
and APARCH models had superior performance compared to other GARCH 
models. The HAR model performed better than the GARCH model when 
using daily data. The HAR model had an advantage over the GARCH model 
in accurately quantifying short-term volatility. In their study, Yahaya et al. 
(2022) investigated the ARCH-LM model and found no evidence of an 
ARCH impact on the volatility of Bitcoin and Ethereum. The impact may 
be seen on Binance Coin. Moreover, the CGARCH model was considered 
the most optimal model for analysing Binance Coin.

METHODOLOGY

The present study employed a predictive research approach with time series 
data of cryptocurrencies as the primary variables. The population comprised 
cryptocurrencies that had been formally listed on the global market between 
January 1, 2020, and June 30, 2023. The selection of the sample was 
conducted according to the criteria used to rank cryptocurrencies with the 
highest market capitalization, specifically focusing on Bitcoin and Ethereum.

Data Collection Technique

The dataset used in this research consisted of daily pricing data for 
cryptocurrencies from January 1, 2020, to June 30, 2023. The dataset used 
to estimate the parameter model and reflect the sample period spanned from 
January 1, 2020, to December 31, 2022. Simultaneously, the remaining data 
covering the period from January 1, 2023, to June 30, 2023, was used for 
the purpose of doing out-of-sample forecasting. The data gathering methods 
used in this research were obtained from credible web platforms, namely 
www.coinmarketcap.com and www.finance.yahoo.com.

Analysis Method

The data analysis involved the utilisation of multiple regression 
analysis. The objective of employing the regression data analysis approach 
was to measure the volatility of cryptocurrencies prices and assess the most 



161

MODELLING CRYPTOCURRENCY PRICE VOLATILITY 

effective prediction model by considering the highest degree of accuracy 
or the lowest level of error. The analysis was conducted through a series 
of stages:

Calculating the actual price volatility
According to Hull (2012), the concept of daily volatility refers to the 

standard deviation of the proportional change in a variable over the course 
of a single day. Consequently, the price volatility of each cryptocurrency 
for a single day is determined by converting daily observations using the 
subsequent equation:

10 
 

s = � Ʃ ( x − x�  ) 2

( n − 1 )
                                                                                            (1) 

The dispersion of statistical data is quantified by the standard deviation (s). 

The degree of dispersion is calculated using the technique of calculating the deviation 

of data points. As previously mentioned, the variance of a data collection is calculated 

by finding the average squared distance between the mean value (x�) and each 

individual data value (x) based on the opening price, the lowest price, the highest 

price and the closing price of cryptocurrency intraday price. The standard deviation 

quantifies the extent to which data values deviate from the mean. 

When calculating the sample mean, only a subset of the data values from the 

population is taken into account. Therefore, the sample mean serves as an 

approximation of the population mean, but this creates some level of uncertainty or 

bias in our computation of standard deviation. In order to make the necessary 

adjustment, the denominator of the sample standard deviation is modified to be n-1, 

rather than just n. This is referred to as Bessel's correction. 

Calculating the estimated price volatility 

In the case of homoscedastic data, the volatility, represented by the standard 

deviation, can be obtained directly from the descriptive statistics provided by EViews 

or can be computed using formulas in Microsoft Excel. However, in the case of 

heteroscedastic data, volatility is determined using GARCH, EGARCH, and EWMA 

model. 

 

a. Generalized Autoregressive Conditional Heteroscedasticity 
(GARCH) 

The ARCH/GARCH volatility estimation model has been widely used in the 

analysis of time series data. The ARCH model was first established by Engle in 1982, 

while Bollerslev later developed the GARCH model in 1986, which may be seen as 

an expanded version of the ARCH model. This approach aims to provide forecasts 

                                                                                     (1)

The dispersion of statistical data is quantified by the standard deviation 
(). The degree of dispersion is calculated using the technique of calculating 
the deviation of data points. As previously mentioned, the variance of a data 
collection is calculated by finding the average squared distance between the 
mean value  and each individual data value (x) based on the opening price, 
the lowest price, the highest price and the closing price of cryptocurrency 
intraday price. The standard deviation quantifies the extent to which data 
values deviate from the mean.

When calculating the sample mean, only a subset of the data values 
from the population is taken into account. Therefore, the sample mean 
serves as an approximation of the population mean, but this creates some 
level of uncertainty or bias in our computation of standard deviation. In 
order to make the necessary adjustment, the denominator of the sample 
standard deviation is modified to be n-1, rather than just n. This is referred 
to as Bessel’s correction.

Calculating the estimated price volatility
In the case of homoscedastic data, the volatility, represented by the 

standard deviation, can be obtained directly from the descriptive statistics 
provided by EViews or can be computed using formulas in Microsoft Excel. 
However, in the case of heteroscedastic data, volatility is determined using 
GARCH, EGARCH, and EWMA model.
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1.	 Generalized Autoregressive Conditional Heteroscedasticity 
(GARCH)

	
	 The ARCH/GARCH volatility estimation model has been widely 

used in the analysis of time series data. The ARCH model was first 
established by Engle in 1982, while Bollerslev later developed the 
GARCH model in 1986, which may be seen as an expanded version 
of the ARCH model. This approach aims to provide forecasts for 
time series data that display conditional volatility. The variance of 
the dependent variable is calculated by including the values of both 
the dependent and independent variables from the previous period. 
Therefore, if this model assumes that the observed data are produced 
by a random process with varying volatility, it can be deduced that the 
variance of the data would display a noticeable pattern. The GARCH 
model requires the existence of heteroscedasticity conditions to 
accommodate variations in variance.

	 The ARCH (p) model is utilised to identify the presence of conditional 
heteroscedasticity in financial data. This is accomplished by making 
the assumption that the conditional variance of the present is equivalent 
to the weighted mean of the squared unexpected data from previous 
periods.
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aforementioned equation, resulting in the following expression:
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	 The coefficients α and β provide crucial insights into the short-term 
dynamics of the outcomes in the time series of volatility. A larger value 
of β suggests that the process of reverting the shock to the variance will 
be characterised by a prolonged duration. A larger value of α suggests 
a heightened degree of sensitivity to market fluctuations in terms of 
the reaction to volatility. Alexander’s (2001) results suggested that 
volatility tended to exhibit spikiness at both greater and lower values.

	 To provide a stable GARCH process and preserve a plus weighting for 
long-term variance, it is essential that the sum of α and β be smaller 
than 1. The GARCH model incorporates the phenomenon of volatility 
clustering, which is an inherent component of market behaviour. In 
addition, the existence of a consistent variation over an extended 
duration suggests that the GARCH model incorporates the idea of 
mean reversion.

2.	 Exponential Generalized Autoregressive Conditional 
Heteroscedasticity (EGARCH)

	
	 The EGARCH model is a modified version of the GARCH model that 

considers the separate influence of good and bad shocks on volatility. 
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pronounced effect on market volatility compared to good news of the 
same magnitude. The concept of the leverage effect, first proposed 
by Black (1976), offers a theoretical explanation for the presence of 
asymmetric volatility. The study model differs from the GARCH model 
because it uses logarithmic data.

	 Dhamija (2010) asserted that the field of financial literacy frequently 
employs the EGARCH model. Nelson (1991) explained that the model 
intentionally incorporates unequal effects between good and bad asset 
data. The logarithmic form in the equation for conditional variance 
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guarantees that the variance remains plus, regardless of the parameter’s 
sign. Limitations are not always required for the parameters of the 
EGARCH model. The equation for the EGARCH (p,q) model is 
presented by Maqsood et al. (2017) as follows:
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3.	 Exponentially Weighted Moving Average (EWMA)

	 The EWMA is a methodology used for predicting volatility, in which 
higher emphasis is placed on current observational data compared to 
historical data. The rationale underlying this weighting is predicated 
on the supposition that contemporary data offers superior insights into 
market situations in comparison to historical data (Marrison, 2002).

	 The volatility forecast may be calculated as the weighted average of the 
previous period’s volatility forecast and the square of the current data. 
Morgan (1996) presents a method for calculating volatility utilising 
the EWMA methodology. The equation for computing volatility is as 
follows:
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variance rate when allocating weights. Indeed, the lack of a consistent moderate 
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to a lasting change in the pattern of volatility. Hence, it can be inferred that the 

EWMA model is a specific case of the GARCH model, where the parameter γ is 

assigned a value of 0, α is set to 1 minus γ, and β is set to γ. 
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	 The calculations of the EWMA model are heavily influenced by the 
parameter λ, which is sometimes referred to as the decay factor. The 
value of λ is within the interval 0 < λ < 1. As the value of λ grows, 
there is a greater focus on integrating past data, leading to a more 
seamless data series. The EWMA model incorporates the limited 
memory characteristic of the market and guarantees that shocks do 
not persist indefinitely (Maukonen, 2002).
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	 According to Alexander (2001), as the parameter λ approaches 1, the 
level of volatility will show a greater degree of persistence after a 
market shock. The key difference between the GARCH and EWMA 
models is the long-term average variance rate when allocating weights. 
Indeed, the lack of a consistent moderate difference in the EWMA 
model indicates that every market price disturbance leads to a lasting 
change in the pattern of volatility. Hence, it can be inferred that the 
EWMA model is a specific case of the GARCH model, where the 
parameter γ is assigned a value of 0, α is set to 1 minus γ, and β is set 
to γ.

	 The Risk Metrics System assigns a value of 0.94 to the parameter λ 
for daily observation data and a value of 0.97 for monthly observation 
data, as stated by the system. The chosen decay factor for this study 
will be λ = 0.94, given the dataset used in this analysis comprises daily 
price data for each cryptocurrency.

RESULTS AND DISCUSSION

Calculating the Actual Price Volatility

The sample period included all of the data gathered, starting on January 
1, 2020, and ending on December 31, 2022. We used 1096 observation data 
points from this era’s dataset to estimate the model’s parameters. Meanwhile, 
we used the remaining data, specifically the 181 observations from 1 January 
2023 to 30 June 2023, to predict outcomes beyond the observed data.

The research utilised a total of 2554 observation data points, 
comprising 1277 data points for Bitcoin and 1277 data points for Ethereum. 
The determination of daily real price volatility was conducted with the 
EViews programme by using equation (1). The Table below presents the 
outcomes of the computation of price volatility for each cryptocurrency, 
as follows:
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Table 2: Descriptive Statistics of the Actual Price Volatility 
for Each Cryptocurrency (1/1/2020 – 30/6/2023)

Bitcoin (BTC-USD) Ethereum (ETH-USD)
Mean 683.5547 51.39222

Median 455.3241 34.25176

Max. 6016.232 725.6329

Min. 25.39798 1.013131

Std. Dev. 699.1191 57.16782

Jarque-Bera 4742.447 23836.80

Prob. 0.000000 0.000000

The data as shown in Table 2 revealed a notable disparity in pricing 
between Bitcoin and Ethereum, with Bitcoin exhibiting a significantly higher 
value. The standard deviation of Bitcoin was higher than Ethereum, which 
meant that Bitcoin was more volatile (risky) than Ethereum.

When the standard deviation exceeded the mean price value, it also 
indicated that there was a relatively significant degree of price volatility. 
The Jarque-Bera test statistic, which produced a p-value of 0.000000 
and indicated a significance level below 5%, demonstrated that the data 
distribution deviated from normality.

The GARCH and EWMA model themselves are usually used in 
analysis such as returns and volatility, include the abnormal data distribution, 
indicated by the Jarque-Bera test statistic in Table 2. The GARCH and 
EWMA frameworks can also provide something that is sensitive to the 
assets to be measured, especially to data that has very high volatility, as is 
the case in this research, namely the cryptocurrencies Bitcoin and Ethereum.
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Calculating the Estimated Price Volatility

Choosing the best GARCH and EGARCH model
The selection of the best GARCH and EGARCH model was guided 

by a number of criteria, such as adjusted R-squared, probability parameter 
values, the AIC, and the SC. In order to determine the importance of 
the variables utilised, a significance test was conducted at a significance 
level of 5% (α = 0.05). In the event that the probability was less than the 
predetermined significance level of 5%, the variable was deemed statistically 
significant. On the other hand, if the probability was equal to or greater than α 
(5%), the variable was said to be statistically unimportant. Subsequently, the 
optimal model was chosen by evaluating the modified R-squared, AIC, and 
SC values. The optimum model was described by a significant probability, 
the greatest adjusted R-squared value, the lowest AIC value, and the lowest 
SC value. The ideal model was chosen from model (0,1), (1,0), and (1,1).

GARCH model
EViews is a valuable tool for doing rigorous testing of GARCH 

models. The Table below presents the test results for each GARCH model 
applied to the Bitcoin and Ethereum.
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Table 3: Estimation Results of the Best GARCH Model 

Model
Bitcoin (BTC-USD) Ethereum (ETH-USD)

Prob. Adjusted
R-Squared AIC SC Prob. Adjusted

R-Squared AIC SC

GARCH
(0,1)

0.0000 0.315632 15.44057 15.45672 0.0000 0.359433 10.21399 10.23225

GARCH
(1,0)

0.0000 0.221347 15.29037 15.30652 0.0000 0.337943 10.22310 10.24136

GARCH
(1,1)

0.0000 0.284253 14.83352 14.85371 0.0199 0.355936 9.273846 9.296670

Based on the results as presented in Table 3, it was clear that Bitcoin 
had the highest adjusted R-squared value of 0.315632 among the GARCH 
(0,1) models. However, the GARCH (1,1) model produced the most accurate 
result. An optimal model is characterised by its minimal error, as indicated 
by the lowest values of the AIC and the SC. Therefore, we concluded that 
the GARCH (1,1) model was the most suitable for analysing Bitcoin. We 
obtained similar results in the Ethereum section, where the GARCH (1,1) 
model produced the lowest values for the AIC and the SC. The GARCH 
(1,1) model was utilised to compare the EWMA model in light of the test 
outcomes.

EGARCH model
The EGARCH model is a modified version of the GARCH model 

that considers the asymmetric impact of good and bad shocks on volatility. 
Afterwards, the assessment of the most suitable EGARCH model was carried 
out using the EViews programme. Table 4 displays the test results of each 
EGARCH model for Bitcoin and Ethereum.

Table 4: Estimation Results of the Best EGARCH Model

Model
Bitcoin (BTC-USD) Ethereum (ETH-USD)

Prob. Adjusted
R-Squared AIC SC Prob. Adjusted

R-Squared AIC SC

EGARCH
(0,1)

0.0000 0.263319 14.94131 14.96414 0.9000 0.348994 9.286382 9.309206

EGARCH
(1,0)

0.0000 0.232216 15.48607 15.50889 0.0000 0.344386 10.30134 10.32416

EGARCH
(1,1)

0.0001 0.271812 14.92656 14.95395 0.0009 0.357770 9.249170 9.276559

Based on the findings as shown in Table 4, it was evident that the 
EGARCH (1,1) model had superior performance when used to analyse 
Bitcoin and Ethereum. This was due to its superior performance across all 
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criteria pertaining to probabilities of less than 5%. The criteria encompassed 
the highest adjusted R-squared value, the lowest AIC value, and the lowest 
SC value.

Calculating the estimated price volatility for GARCH, 
EGARCH, and EWMA model

The computing technique for estimating volatility using the GARCH 
(1,1) model incorporated the use of equation (5). The computation of the 
volatility estimate using the EGARCH (1,1) model it was performed by 
utilising equation (7). The estimation of volatility using the EWMA model 
was conducted by employing equation (9).

Also, the White Heteroscedastic Test conducted in the previous step 
showed that there was heteroscedasticity, which meant that the error variance 
was not constant between the two different types of cryptocurrencies. An 
estimation of their volatility was conducted. Table 5 presents the outcomes 
of the expected price volatility computation for each cryptocurrency.

Table 5: Descriptive Statistics of the Estimated Price Volatility 
(1/1/2020 – 31/12/2022)

Statistic 
Descriptive

Bitcoin (BTC-USD) Volatility Ethereum (ETH-USD) Volatility

Realized Estimated 
GARCH

Estimated 
EGARCH

Estimated 
EWMA Realized Estimated

GARCH
Estimated
EGARCH

Estimated
EWMA

Mean 729.0380 562.2116 529.8888 283.8257 54.94867 41.40588 39.12211 20.56374
Median 492.2473 470.3295 474.5620 187.1538 39.23925 37.54123 38.24989 13.93991
Maximum 6016.232 2199.842 1783.979 2632.669 725.6329 307.8478 283.6312 333.8611
Minimum 32.71282 103.1979 101.1376 10.19751 1.013131 2.395591 2.056622 0.439953
Std. Dev. 737.1391 402.8077 335.2878 306.7111 60.61671 39.79475 34.18442 24.61524

We could see as shown in Table 5 that the EGARCH (1,1) and GARCH 
(1,1) model were substantially better at forecasting volatility than the 
EWMA model for all cryptocurrencies from January 1, 2020, to December 
31, 2022, which was the sampling period. This was due to the fact that the 
mean, median, and standard deviation figures provided a more accurate 
representation of the actual values. Nevertheless, the aforementioned 
volatility estimation models proved inadequate in capturing instances of 
extreme volatility, as evidenced by the maximum realised volatility values of 
6016.232 for Bitcoin and 725.6329 for Ethereum. In contrast, the maximum 
volatility values predicted by the aforementioned estimation models were 
significantly lower, reaching only 2632.669 for Bitcoin and 333.8611 for 
Ethereum.
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We could see as shown in Table 5 that the EGARCH (1,1) and GARCH (1,1) 

model were substantially better at forecasting volatility than the EWMA model for 

all cryptocurrencies from January 1, 2020, to December 31, 2022, which was the 

sampling period. This was due to the fact that the mean, median, and standard 

deviation figures provided a more accurate representation of the actual values. 

Nevertheless, the aforementioned volatility estimation models proved inadequate in 

capturing instances of extreme volatility, as evidenced by the maximum realised 

volatility values of 6016.232 for Bitcoin and 725.6329 for Ethereum. In contrast, the 

maximum volatility values predicted by the aforementioned estimation models were 

significantly lower, reaching only 2632.669 for Bitcoin and 333.8611 for Ethereum. 
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Table 6 presents the outcomes of price volatility computation for each 
cryptocurrency based on the timeframe from 1 January 2023 to 30 June 
2023 (the purpose of conducting out-of-sample forecasting).

Table 6: Descriptive Statistics of Estimated Price Volatility 
(1/1/2023 – 30/6/2023)

Statistic 
Descriptive

Bitcoin (BTC-USD) Volatility Ethereum (ETH-USD) Volatility

Realized Estimated 
GARCH

Estimated 
EGARCH

Estimated 
EWMA Realized Estimated

GARCH
Estimated
EGARCH

Estimated
EWMA

Mean 413.9662 251.4439 246.9927 160.3933 30.29312 16.65893 16.55469 11.51647
Median 347.0954 244.5923 261.5414 133.5702 26.61739 16.70761 16.73520 9.018628
Maximum 1509.411 360.7766 354.4097 620.3405 99.30349 16.78101 19.07493 42.03356
Minimum 25.39798 221.1630 132.2025 18.14381 4.004055 15.20108 13.02069 2.355047
Std. Dev. 270.0277 19.94361 55.91579 105.2469 17.00370 0.168992 1.393245 7.059647

Table 6 demonstrates that the EGARCH (1,1) and GARCH (1,1) 
model for volatility estimates outperformed the EWMA model across all 
cryptocurrencies for the out-of-sample forecasting period from January 1, 
2023, to June 30, 2023. This observation could be attributed to the fact that 
the mean and median values had the highest degree of similarity to the actual 
values. Nevertheless, the aforementioned volatility estimation models were 
unable to accurately predict extreme volatility movements. For instance, 
the Bitcoin reached a maximum realised volatility value of 1509.411, while 
the Ethereum reached a maximum of 99.30349. In contrast, the maximum 
volatility estimated by all models for Bitcoin was only 620.3405, and for 
Ethereum, it was 42.0335.
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Determining the Best Volatility Estimation Model

The technical analysis using time series data frequently exhibits 
significant volatility. The presence of high volatility data suggests that the 
error variance is not consistent and exhibits heteroscedasticity. This has 
significant implications for increased risks and potential losses associated 
with investing in various financial instruments, such as cryptocurrency, in 
the specific context of this study. The selection of the optimal volatility 
estimate model is determined by evaluating the model with the lowest error 
value is selected.

Previous research conducted by Maukonen (2002), Kumar (2006), and 
Ding and Meade (2010) had also employed the Symmetric Error Statistics 
calculation methodology, which utilises the minimum error values. The 
following are the outcomes of the Symmetric Error Statistics computations 
for the GARCH (1,1), EGARCH (1,1), and EWMA model applied to each 
cryptocurrency throughout the timeframe of 1 January 2023 to 30 June 2023.

Table 7: Symmetric Error Statistics Calculation Results
for Each Crypto Currency (1/1/2020 – 31/12/2022)

Model
Bitcoin (BTC-USD) Ethereum (ETH-USD)

RMSE MAE MAPE SMAPE RMSE MAE MAPE SMAPE
GARCH 578.3988 316.6396 54.16216 46.52028 45.57810 23.89892 48.56223 46.50715

EGARCH 593.0378 318.3757 53.48710 46.32784 46.02122 23.60520 46.34365 45.28978
EWMA 672.9794 463.3504 61.95087 90.71692 53.06383 35.08458 61.96162 92.25865
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Table 8: Symmetric Error Statistics Calculation Results                                                       
for Each Crypto Currency (1/1/2023 – 30/6/2023)

Model
Bitcoin (BTC-USD) Ethereum (ETH-USD)

RMSE MAE MAPE SMAPE RMSE MAE MAPE SMAPE
GARCH 310.2398 213.3216 54.46249 54.49400 21.76566 15.46574 45.00314 54.90296

EGARCH 306.1937 211.4253 51.00870 54.33050 21.71651  15.45508 44.65825 55.04427

EWMA 323.7400 262.9264 62.18462 90.36068 22.77798 19.41676 62.37147 92.15963

The results of this study showed that the EGARCH (1,1) volatility 
estimation model was better than the GARCH (1,1) and EWMA volatility 
estimation model. This was proven by the smallest error values of RMSE, 
MAE, MAPE, and SMAPE. Even in the period of 1 January 2023 to 30 June 
2023 which was used for out-of-sample forecasting, the values of RMSE, 
MAE, MAPE, and SMAPE from the EGARCH (1,1) volatility estimation 
model obtained the smallest error value, which meant it was superior 
compared to the GARCH (1,1) and EWMA volatility estimation model. 
According to Naimy and Hayek (2018), the EGARCH model performed 
better than the GARCH and EWMA model, both inside and outside the 
sample, with more accuracy during the time outside the sample.

CONCLUSION

The EGARCH (1,1) volatility estimation model demonstrated superior 
performance. This finding aligns with the outcomes of a study conducted 
by Alexander and Dakos (2023), Ngunyi et al. (2019), and Naimy and 
Hayek (2018) demonstrating that the asymmetric GARCH model exhibited 
superior performance across several cryptocurrencies. Further, Bergsli et 
al. (2022) found that the EGARCH and APARCH model exhibited superior 
performance compared to other GARCH models. According to the findings 
of the aforementioned study, the GARCH (1,1), EGARCH (1,1), and EWMA 
volatility estimation model exhibited limitations in capturing high volatility 
fluctuations and demonstrate improved accuracy when the observed daily 
volatility is at a lower level. However, it is crucial to acknowledge that the 
aforementioned discoveries are only relevant to Bitcoin and Ethereum. The 
maximum threshold of high volatility is expected to be linked to the degree 
of uncertainty. This finding might assist investors and prospective investors 
in evaluating the risks and rewards associated with the Bitcoin and Ethereum. 
Investors, sometimes referred to as traders, possess the ability to formulate 
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prognostications on the future value of individual cryptocurrencies. Future 
research might reassess the precision of the model, as cryptocurrencies may 
have evolved into more established assets or may exhibit less susceptibility 
to market dynamics that sometimes give rise to cryptocurrency bubbles, 
subsequently leading to market collapses. It is important to conduct research 
on the analysis of cryptocurrency portfolio models, taking into account, the 
distinct risk characteristics associated with each individual cryptocurrency.
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