

e-ISSN: 2785-924X

Available online at

https://jsst.uitm.edu.my/index.php/jsst

Journal of Smart
Science and
Technology

Journal of Smart Science and Technology 5(1) 2025, 17-39.

www.jeeir.com

https://doi.org/10.24191/jsst.v5i1.101

© 2025 by the authors. Submitted for possible open access publication under the terms and conditions of

the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

©Authors, 2025

Indoor Occupancy Detection Using Machine Learning and

Environmental Sensors

Akindele Segun Afolabi1*, Olubunmi Adewale Akinola2, Oyinlolu Ayomidotun

Odetoye3, Emmanuel Adetiba4,5,6

1Department of Electrical and Electronics Engineering, University of Ilorin, Ilorin 240003, Nigeria
2Department of Electrical and Electronic Engineering, Federal University of Agriculture, Abeokuta 110111, Nigeria

3Department of Electrical and Information Engineering, Landmark University, Omu-Aran 251103, Nigeria
4Department of Electrical and Information Engineering, Covenant University, Ota, Ogun State 112233, Nigeria

5Covenant Applied Informatics and Communication Africa Center of Excellence, Covenant University, Ota Ogun 112233, Nigeria
6HRA Institute of System Science, Durban University of Technology, Durban 4000, South Africa

Citation:
Afolabi, A. S., Akinola, O. A., Odetoye, O. A., & Adetiba, E. (2025). Indoor occupancy detection using machine learning and
environmental sensors. Journal of Smart Science and Technology, 5(1), 17-39.

1* Corresponding author. E-mail address: afolabisegun@unilorin.edu.ng

ARTICLE INFO ABSTRACT

Article history:
Received 13 November 2024
Revised 02 February 2025
Accepted 20 February 2025
Published 31 March 2025

 Detecting the occupancy status of enclosed spaces has been immensely

beneficial in the automated control of HVACs (heating, ventilation, and

cooling systems), providing assistance to the elderly, healthcare

provisioning, recognition of human activity, and others. As a result of

these benefits, a plethora of machine learning-based solutions for

occupancy detection has been developed in the literature. However,

many of these solutions have poor prediction accuracies. Furthermore,

it is necessary to develop models that are robust enough to achieve

acceptable performance in situations where partial data from sensors are

available. In this paper, we experimentally determined the Machine

Learning (ML) models that are most robust for use in indoor occupancy

detection. This is important because the activities of human subjects in

an ML environment are capable of disrupting the data available to some

deployed ML models, which might cause the performance of such

models to drop. Hence, it is crucial to determine ML models that are

robust against such disruptions. In this paper, three algorithms were

developed: the first was for outlier removal from features, the second

was for feature selection, and the third was for partial-features-

availability-aware ML model selection. These algorithms were applied

to data from environmental sensors such as temperature, humidity,

carbon dioxide (CO2), and light sensors, and afterward. The resulting

data was used to train six different ML-based classifiers. The classifiers

Keywords:
indoor occupancy detection
machine learning
data leakage
target leakage
random forest classifier
decision trees classifier

DOI:
10.24191/jsst.v5i1.101

https://doi.org/10.24191/jsst.v5i1.101
mailto:afolabisegun@unilorin.edu.ng

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

18

1 INTRODUCTION

Human occupancy detection, which involves detecting the presence of people in a building, is a vital

task that has, in recent times, been shown to have numerous benefits. For example, it has encouraged the

creation of several smart applications in a variety of relevant contexts such as automated control of heating,

ventilation, and cooling systems (HVACs)1–3 providing assistance to the elderly4, healthcare provision5,6,

recognition of human activity7,8 to name a few. Occupancy detection has also accelerated the development

of smart buildings9,10. Technologies for detecting occupancy and estimating the number of individuals in a

space are roughly classified as: a) room installation devices11,12, and b) body-worn devices13. In practice,

constantly wearing gadgets is inconvenient, therefore, researchers have recently focused on systems that

rely solely on devices installed within the room infrastructure10,14.

In the built environment, there are two major techniques for determining occupants’ presence and

count15. The first method is the physics-based model, which predicts occupancy using estimated internal

heat gain in rooms, considering factors such as size, layout, and building envelope. The second is the

data-driven model which detects user presence in buildings and is less complex than the physics-based

models. However, generating the data-driven model requires a lengthy training process and a large amount

of tagged occupancy data, which may be unavailable for diverse rooms and buildings.

One of the most important applications of occupancy detection systems is their use in smart

buildings for the automatic control of appliances. Some occupancy characteristics that might be employed

as key control inputs in a smart home include16: a) the presence of occupants can be utilized to switch active

equipment on or off when the part of the evaluated building is inhabited or empty; b) the number of

occupants can be utilized to accurately manage independent ventilation systems.

There have been many initiatives to monitor building occupancy using wired and wireless sensor

networks. For example, some research studies combined motion sensor data with information from

magnetic reed switches17,18, while others used temperature sensor arrays19, passive infrared (PIR) sensors20,

cameras21, or ambient sensors22 to estimate the room-level occupancy status (i.e., occupant presence or

count). Also, non-environmental sensors like RFID (radio frequency identifier) sensors23, ultrasonic

sensors24, pressure-based sensors23, Doppler radar-based sensors25, depth sensors23, and radio frequency

(Wi-Fi signal)26–28 are used in applications for occupancy detection. Due to the randomness and complexity

of occupancy, it can be quantified using a mathematical model. Existing work on occupancy models can be

classified into two categories, that is, Mathematical model-based (probability) and Machine Learning (ML)

model-based.

Mathematical model-based: The Mathematical model-based approach can be further classified into

deterministic models and stochastic models. In this approach, deterministic scheduling uses long-term

monitoring and occupancy statistics to generate probability distributions, which aid in estimating group

activity patterns and developing probabilistic models29. Researchers explore the relationship between

occupant behaviour and environmental stimulus using stochastic processes, and treat room occupancy as a

random variable with the probability of occupancy state computed at each time point30,31.

considered in this paper were Logistic Regression (LR), Random Forest

(RF), Decision Tree (DT), K-Nearest Neighbours (KNN), Support

Vector Machines (SVM), and Gradient Boosting Machines (GBM).

Simulation experiments revealed that only the RF and DT models are

robust against the partial features availability problem, achieving at least

90% performance scores across all the considered metrics.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

19

Machine Learning model-based: This is a more realistic and accurate approach that employs data

mining. It can predict future development paths using artificial intelligence methods such as ANNs

(Artificial Neural Networks), decision trees, Support Vector Machines (SVM), logistic regression, and

Bayesian networks26,32,33.

2 RELATED WORKS

Odetoye et al.34 considered a PIR sensor-based occupancy detection strategy for energy

management. However, PIR sensors struggle to accurately identify stationary humans, leading to false

negatives. To improve accuracy, artificial intelligence methods can be applied to sensor data35,36. In recent

times, machine learning and artificial intelligence have been applied to problems in diverse sectors

including health37, agriculture38, and banking39 just to name a few. It has also been extended to occupancy

detection as several studies26,32,33 on occupancy detection have explored the use of artificial neural

networks.

Feng et al.40 proposed an ANN-based occupancy detection approach in which a Convolutional

Neural Network (CNN) and a Long Short-Term Memory (LSTM) network were employed to create a deep

learning model. Praise et al.41 used SVM to develop an occupancy detection model using temperature,

humidity, carbon dioxide (CO2), sound, pressure, and PIR motion sensors. In their work, two sensor nodes

delivered data in real-time to a Raspberry pi gateway and cloud for analytics, and an SVM model classified

data into “occupied” and “not occupied” states using a hyper-plane.

Many studies have considered the use of decision trees27,31 in occupancy detection. For example,

Mahmud et al.36 used a decision tree classifier for occupancy detection. Data from two sensors (PIR and

active infrared sensors) were used to train their model. However, this classifier exhibited poor accuracy and

high variance, leading to incorrect data categorisation. Particularly, the accuracy achieved by the classifier

was 67.6%. In an attempt to boost this accuracy, a decision tree classifier was hybridised with a K-Nearest

Neighbour classifier, but this did not yield any improvement.

An LSTM model was employed for detecting occupancy by Khalil et al.42. The model was applied

to three office spaces in an educational institution case study. The final findings showed that stacked LSTM

with a transfer learning architecture was able to predict occupancy, but it still needed accuracy

improvement. Specifically, the accuracy achieved was 71%.

Fayed et al.43 used the Neutrosophy method to improve the accuracy of different occupancy

classifiers which include Linear Discriminant Analysis (LDA), K-Nearest Neighbours (KNN), Naive Bayes

(NB), Support Vector Machine (SVM), and Random Forest (RF). Interestingly, their approach successfully

increased the accuracies of each of the classifiers. However, several existing machine learning-based

studies on occupancy suffer from performance issues, with low accuracy being a prevalent shortcoming.

This is evidenced in the summary of some existing works in Table 1.

Apart from issues related to low accuracy, another challenge that may arise in ML-based occupancy

detection models is the issue of data leakage. This factor is sometimes ignored in machine learning-based

experiments. Data leakage can lead to inflated results for trained ML models. Leakage is not a novel issue

in machine learning. However, according to Kapoor and Narayanan48, there is no thorough investigation on

leakage in ML-based science, therefore, mitigation solutions for data leakage in scientific ML applications

are still not well understood.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

20

Table 1. A summary of existing works on occupancy detection

Author(s) Methodology Type of enclosed

space

Sensor(s) used Performance Limitation(s)

Mutis et al.44 Occupants were detected

and counted using deep

Convolutional Neural

Network

Office Surveillance

camera

Accuracy = 84% Relatively

low accuracy

Kim et al.45 Activities of occupants

were detected using Long

Short Term Memory

Networks and

Convolutional Neural

Network

Residential Acoustic

sensor

Precision = 78%

F1-score =83.9%

Recall = 90.8%

Relatively

low precision

and F1-scores

Elkhoukhi et al.16 Occupants were detected

and counted using Long

Short Term Memory

Networks

Laboratory CO2 sensor Accuracy = 70% Relatively

low accuracy

Ng et al.46 Occupants were detected

using RF fingerprinting

Laboratory Bluetooth low

energy

Accuracy = 90% Required

Cloud

processing

Mahmud et al.36 Occupants were detected

using Decision Tree and K-

Nearest Neighbours

Office Passive

infrared

sensor and

active infrared

sensor

Accuracy = 67% Relatively

low accuracy

Parise et al.41 Occupants detected using

support vector machines

classifier

Classroom Temperature,

humidity,

pressure, PIR,

acoustic

sensors

Accuracy = 96% Cloud

Processing

required

Wang et al.47 Occupants detected and

counted using the random

forest classifier

Office Wi-Fi device Accuracy = 84% Relatively

low

accuracy

Kapoor and Narayanan48 described data leakage as a flaw in ML that leads to overoptimistic results.

One type of data leakage is target leakage49, that occurs when a feature used in developing an ML model is

unavailable when making predictions. Due to the human activities in spaces where environmental sensors

are deployed, sensor data may be disrupted, leading to the non-availability of certain features which have

been previously used for training prior to model deployment, therefore, causing a condition which we refer

to as “partial feature availability” problem, a condition similar to target leakage. Consequently, this could

lead to a decline in the model’s performance. To address this, a potential partial feature availability problem

in this paper is anticipated and thus, the three algorithms aimed at ensuring acceptable model performance

are developed.

3 MATERIALS AND METHODS

The general framework of the proposed occupancy detection system is shown in Fig. 1. The

framework consists of three blocks, namely, a) an array of sensors, b) the prediction models, and c) the

controller hardware. The input into the system comprises environmental parameters that jointly represent

the occupancy status of the room. These parameters include the concentration of CO2 in the air,

environmental temperature, and environmental humidity. It is important to highlight that the presence of a

human in a room alters these environmental parameters, and if the pattern of this alteration is correctly

explored, an accurate detection of human presence can be achieved.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

21

Fig. 1. Framework diagram.

The first block of Fig. 1 is where environmental parameters are sensed by a few environmental

sensors such as CO2, temperature, and humidity sensors. The readings of the sensors are compiled into a

data bank for processing. The readings are taken periodically from all the sensors and they are grouped to

form an input vector. Each vector is annotated with the actual occupancy status of the room which falls into

two categories, that is occupied (the events when a person was in the room) and not occupied (the events

when nobody was in the room). The second block (prediction models) is where the measured data is

processed to determine if the room is occupied or not. As mentioned in the introduction, different types of

prediction models for occupancy exist, but the focus of this paper is on the ML models. Hence, the data is

fed into ML algorithms to train ML models that could subsequently be used in occupancy prediction when

unannotated new data are supplied to them. The third block is the controller hardware block which controls

the operation of attached electrical appliances based on the input it receives from the prediction models

block.

3.1 Model formulation for sensor data

Consider a vector of sensors S, written as in Equation 1,

𝑆 = [𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝐼] (1)

that are used for environmental status measurements, for example, temperature, humidity level, CO2 level,

etc. Let the measurement recorded by one sensor 𝑠 ∈ 𝑆 at instance k be denoted by 𝑚𝑖
𝑘 ∈ 𝑀𝑘and the total

number of sensors, which is the cardinality of S be denoted by I. In addition, let the set of measurements

recorded by one sensor 𝑠𝑖 for all the instances k be denoted by 𝑀𝑖. Then, the vector of measurement readings

from all the sensors at one instance k is written as in Equation 2, and the vector of measurement readings

from one sensor for all instances k is written as in Equation 3.

𝑀𝑘 = [𝑚1
𝑘, 𝑚2

𝑘, 𝑚3
𝑘, ⋯ , 𝑚𝐼

𝑘], 𝑘 = 1,2, ⋯ , 𝐾 (2)

ARRAY OF SENSOR READINGS

d

d

PREDICTION MODELS

Machine

learning

Deterministic

Stochastic

CONTROLLER HARDWARE

Focus of this

paper

CO2

Humidity

Body temperature

Environmental parameters

Temperature sensor reading

CO2 sensor reading

Humidity sensor reading

d

d
Control of light, HVAC, etc

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

22

𝑀𝑖 = [𝑚𝑖
1, 𝑚𝑖

2, 𝑚𝑖
3, ⋯ , 𝑚𝑖

𝐾], 𝑖 = 1,2, ⋯ , 𝐼 (3)

Also, the concatenation of the measurements read by all sensors for all time instances is given as M

and is written as in Equation 4, where ‖ is a vector concatenation operation and 𝑀𝑘 ⊂ 𝑀. The task is to

build a binary classifier that maps each 𝑀𝑘 to 𝑦𝑘 as shown in Equation 5, where 𝑦𝑘 ∈ {0,1} and 𝑦𝑘 is the

occupancy status of an indoor environment at instance k.

K

k

kMM

1=

=

 (4)

𝑐: 𝑀𝑘 → 𝑦𝑘 (5)

3.2 Removal of outliers

The presence of outliers in the measurement data introduces points of noisy large gradients which

negatively affects the performance of some ML algorithms. There is, therefore, a need to remove them from

the rest of the data. Let the mean of the measurement of a sensor 𝑠𝑖 taken over all the time instances be

given as in Equation 6.

𝜇𝑠𝑖
=

1

𝐾
∑ 𝑚𝑖

𝑘 , ∀𝑠𝑖𝜖𝑆𝐾
𝑘=1 (6)

To eliminate outliers from the measurement data, a 99.7 percentile clipper is applied. The clipper

discards all outliers, such that all values of measurements 𝑚𝑘
𝑖 from sensor 𝑠𝑖 are restricted to the range as

shown in Equation 7, where 𝛿𝑠𝑖
 is the standard deviation of measurements read by sensor 𝑠𝑖 written as in

Equation 8.

𝜇𝑠𝑖
− 3𝛿𝑠𝑖

≤ 𝑚𝑖
𝑘 ≤ 𝜇𝑠𝑖

+ 3𝛿𝑠𝑖
 ∀𝑠𝑖 ∈ 𝑆, ∀𝑚𝑖

𝑘 ∈ 𝑀𝑘, 𝑘 = 1,2,3, ⋯ , 𝐾 (7)

𝛿𝑠𝑖
= √

1

𝐾
∑ (𝑚𝑖

𝑘 − 𝜇𝑠𝑖
)𝐾

𝑘=1

2
,

Ssi 
 (8)

Algorithm 1 describes the 99.7 percentile clipper.

Algorithm 1: The 99.7 percentile clipper algorithm

Input: M which contains outliers

Output: M that is void of outliers

 Initialize: X = empty vector ϕ

1: for k = 1 to total number of instances K do

2: for i = 1 to total number of sensors I do

3: If (measurement 𝑚𝑖
𝑘< (mean 𝜇𝑠𝑖

− 3 × standard deviation 𝛿𝑠𝑖
)) then

4: update 𝑋 ← 𝑋‖𝑀𝑘;

5: else if (measurement 𝑚𝑖
𝑘 > (mean 𝜇𝑠𝑖

+ 3 × standard deviation 𝛿𝑠𝑖
)) then

6: update 𝑋 ← 𝑋‖𝑀𝑘;

7: end if

8: end for

9: end for

10: 𝑀 ← 𝑀\𝑋;

11: return M

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

23

3.3 Feature selection

In this study, a correlation threshold 𝜌th is applied to determine the features set that is used to train

ML models. Let 𝜌𝑖,𝑗 denote the correlation between the measurement data read by two sensors 𝑠𝑖 , 𝑠𝑗 ∈ 𝑆

which is computed as50:

𝜌𝑖,𝑗 =
𝑲 ∑ 𝒎𝒊

𝒌𝒎𝒋
𝒌−(∑ 𝒎𝒊

𝒌𝑲
𝒌=𝟏)(∑ 𝒎𝒋

𝒌𝑲
𝒌=𝟏)𝑲

𝒌=𝟏

√[𝑲 ∑ (𝒎𝒊
𝒌)

𝟐
−𝑲

𝒌=𝟏 (∑ 𝒎𝒋
𝒌𝑲

𝒌=𝟏)
𝟐

][𝑲 ∑ (𝒎𝒋
𝒌)

𝟐
−𝑲

𝒌=𝟏 (∑ 𝒎𝒊
𝒌𝑲

𝒌=𝟏)
𝟐

]

 (9)

If the value of 𝜌𝑖,𝑗 for any two features exceeds a threshold th , one of the features is removed from

the features set while the other is retained. In this context, a feature implies the data read by a single sensor.

Algorithm 2 shows how feature correlation is used to select features for ML model training.

Algorithm 2: The feature selection algorithm

Input: Features M and correlation threshold ρth

Output: Features Fρ which contains only low-correlation features

 Initialize: Fρ = empty vector ϕ

1: for i = 1 to total number of sensors I - 1 do

2: threshold exceeded = FALSE

3: for j = i + 1 to total number of sensors I do

4: 𝜌𝑖,𝑗 =
𝑲 ∑ 𝒎𝒊

𝒌𝒎𝒋
𝒌−(∑ 𝒎𝒊

𝒌𝑲
𝒌=𝟏)(∑ 𝒎𝒋

𝒌𝑲
𝒌=𝟏)𝑲

𝒌=𝟏

√[𝑲 ∑ (𝒎𝒊
𝒌)

𝟐
−𝑲

𝒌=𝟏 (∑ 𝒎𝒋
𝒌𝑲

𝒌=𝟏)
𝟐

][𝑲 ∑ (𝒎𝒋
𝒌)

𝟐
−𝑲

𝒌=𝟏 (∑ 𝒎𝒊
𝒌𝑲

𝒌=𝟏)
𝟐

]

5: if correlation coefficient ρi,j> ρth then

6: threshold exceeded = TRUE

7: end if

8: end for

9: if threshold exceeded = FALSE then

10: Fρ ← Fρ ‖𝑀𝑖

11: end if

12: end for

13: return Fρ

The initialization step of Algorithm 2 is used to create an empty vector Fρ which will eventually be

populated with selected features to be used to train machine learning algorithms. Line 1 of the algorithm

contains counter i that selects a feature while Line 3 contains another counter j that selects another feature.

Line 2 contains a Boolean variable (threshold exceeded) which is used to determine whether a feature

should be included among the features to be used for training a machine learning model or not. Line 4

computes the Pearson correlation coefficient of the selected features which involves looping through all the

K instances in each of the two selected features. The result of Line 4 is 𝜌𝑖,𝑗 which is the correlation between

the two features which is compared with a threshold value ρth in Line 5. If the computed value of 𝜌𝑖,𝑗 is

greater than the set threshold th , then the Boolean variable, threshold exceeded, is set to TRUE in Line 6.

In Line 9, the Boolean variable threshold exceeded is examined, and if it is FALSE, then vector Mi, which

contains all the instances of the ith feature is included in Fρ in Line 10, otherwise it is not included. This is

repeated until the correlation between each feature and all other features has been computed and any time

the correlation threshold is not exceeded, the content of Fρ is updated in Line 10. Finally, the selected

features stored in vector Fρ are returned in Line 13.

In this paper, we preempt a potential partial feature availability and develop a method to address it.

Particularly, our approach is to ameliorate the detrimental impact of a potential partial availability of

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

24

features on the performance of a model. To achieve this, we consider that features that are strongly

correlated with the target will have the most detrimental impact on model performance if they become

unavailable. This is due to the behaviour of the machine learning optimization process which prioritizes

features that are highly correlated with the target as stronger predictors51. This happens because features

that are highly correlated with the target are relatively easier to learn for predicting the target51. Therefore,

the proactive exclusion of features that are strongly correlated with the target from the features set would

reduce the detrimental impact of the partial availability of features. Hence, Algorithm 2 considers the

correlation between each feature and the target variable (ground truth) such that, if the correlation exceeds

a threshold value, the feature is removed from the feature set.

3.4 Partial feature availability-aware ML model selection

Consider a set of ML models such as Logistic Regression (LR), Random Forest (RF), Decision Tree

(DT), K-Nearest Neighbours (KNN), Support Vector Machines (SVM), and Gradient Boosting Machines

(GBM) models; these models can be grouped into a row vector, Mod, having W elements as shown in

Equation 10.

Mod = [LR, RF, DT, KNN, SVM, GBM]. (10)

For each of the models in the vector Mod, the corresponding performances in terms of accuracy,

precision, recall, and F1-score52 are computed and combined to form vectors such as, [𝐴𝑐𝑐𝑤]𝑤=1
𝑊 ,

[𝑃𝑟𝑒𝑤]𝑤=1
𝑊 , [𝑅𝑒𝑐𝑤]𝑤=1

𝑊 , and[𝐹1𝑤]𝑤=1
𝑊 , respectively. Here, w = 1,2,3, …, W denote ML models LR, RF,

DT, KNN, SVM, and GBM as indicated in Equation 10. For example, Acc1 is the accuracy of the LR model,

Acc2 is the accuracy of the RF model, and so on. Likewise, Pre1 is the precision of the LR model, Pre2 is

the precision of the RF model, and so on. As will be shown in Algorithm 3, the four performance model

vectors [𝐴𝑐𝑐𝑤]𝑤=1
𝑊 , [𝑃𝑟𝑒𝑤]𝑤=1

𝑊 , [𝑅𝑒𝑐𝑤]𝑤=1
𝑊 , and [𝐹1𝑤]𝑤=1

𝑊 , are used to determine the elements of partial

features availability candidacy binary vectors [𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Pre]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Rec]𝑤=1

𝑊 , and[𝑀𝑜𝑑𝑤
F1]𝑤=1

𝑊 ,

respectively depending on whether or not an ML model's performance reaches a minimum threshold. Let

Pth denotes the minimum performance threshold required of each model for such model to be considered

as a candidate partial-features-robust model. The candidacy of the model is determined using Equation 11

to 14. Specifically, it is determined and binarised based on accuracy (Equation 11), precision (Equation 12),

recall (Equation 13), and F1-score (Equation 14), where w = 1,2, …, W.

𝑀𝑜𝑑w
Acc = {

1 if 𝐴𝑐𝑐𝑊 ≥ 𝑃th

0 otherwise

 (11)

𝑀𝑜𝑑w
Pre = {

1 if 𝑃𝑟𝑒𝑊 ≥ 𝑃th

0 otherwise

 (12)

𝑀𝑜𝑑w
Rec = {

1 if 𝑅𝑒𝑐𝑊 ≥ 𝑃th

0 otherwise

1

0
 (13)

𝑀𝑜𝑑w
F1 = {

1 if 𝐹1𝑊 ≥ 𝑃th

0 otherwise

 (14)

Let [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
 denotes a binary vector that indicates the partial features robustness status of

each model; a model element with a value of "1" implies that the model is robust against partial feature

availability problem, while a value of "0" implies otherwise. The partial features robustness of each model

is determined as in Equation 15, where w = 1,2, …, W and notation “&” represents a bitwise AND operator.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

25

𝑀𝑜𝑑𝑤
T_rob = {

1 if (𝑀𝑜𝑑w
Acc & 𝑀𝑜𝑑w

Pre & 𝑀𝑜𝑑w
Rec & 𝑀𝑜𝑑w

F1) = 1

0 otherwise

 (15)

Equation 15 implies that if a model has all its performance values exceeding or equal to a minimum

threshold Pth, the model is considered robust against partial feature availability problems and vice versa.

The procedure for determining the partial features robustness status of an ML model is shown in

Algorithm 3.

Algorithm 3: The partial feature availability-aware ML model selection algorithm

Input: [𝐴𝑐𝑐𝑤]𝑤=1
𝑊 , [𝑃𝑟𝑒𝑤]𝑤=1

𝑊 , [𝑅𝑒𝑐𝑤]𝑤=1
𝑊 , [𝐹1𝑤]𝑤=1

𝑊

Output: [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊

Initialize: [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
= ∅, [𝑀𝑜𝑑𝑤

Acc]𝑤=1
𝑊 = ∅, [𝑀𝑜𝑑𝑤

Pre]𝑤=1
𝑊 = ∅, [𝑀𝑜𝑑𝑤

Rec]𝑤=1
𝑊 = ∅,

 [𝑀𝑜𝑑𝑤
F1]𝑤=1

𝑊 = ∅

Binarize model performance vectors:

1: for w = 1 to W do

2: If 𝐴𝑐𝑐w ≥ 𝑃th then

3: 𝑀𝑜𝑑𝑤
Acc = 1

4: else

5: 𝑀𝑜𝑑𝑤
Acc = 0

6: end if

7:

8: If 𝑃𝑟𝑒w ≥ 𝑃th then

9: 𝑀𝑜𝑑𝑤
Pre = 1

10: else

11: 𝑀𝑜𝑑𝑤
Pre = 0

12: end if

13:

14: If 𝑅𝑒𝑐w ≥ 𝑃th then

15: 𝑀𝑜𝑑𝑤
Rec = 1

16: else

17: 𝑀𝑜𝑑𝑤
Rec = 0

18: end if

19:

20: If 𝐹1w ≥ 𝑃th then

21: 𝑀𝑜𝑑𝑤
F1 = 1

22: else

23: 𝑀𝑜𝑑𝑤
F1 = 0

24: end if

25:

26: Determine the partial features robustness status:

27: for w = 1 to W do

28: if 𝑀𝑜𝑑𝑤
Acc = 1 then

29: if 𝑀𝑜𝑑𝑤
Pre = 1 then

30: if 𝑀𝑜𝑑𝑤
Rec = 1 then

31: if 𝑀𝑜𝑑𝑤
F1 = 1 then

32: 𝑀𝑜𝑑𝑤
T_rob

33: else

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

26

34: 𝑀𝑜𝑑𝑤
T_rob

= 0

35: end if

36: else

37: 𝑀𝑜𝑑𝑤
T_rob

= 0

38: end if

39: else

40: 𝑀𝑜𝑑𝑤
T_rob

= 0

41: end if

42: else

43: 𝑀𝑜𝑑𝑤
T_rob

= 0

44: end if

45: end for

46: return [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊

4 PERFORMANCE EVALUATION

An experiment was set up and a publicly available occupancy dataset53 was used.

4.1 Data collection

A publicly available occupancy dataset53 was used in this study. Temperature, humidity, light,

humidity-ratio, and CO2 levels were measured in an office area with approximate dimensions of

5.85 m × 3.50 m × 3.53 m (W × D × H)54. The data was collected using a microcontroller. A ZigBee radio

was linked to it, and the data was sent to a recording station. A digital camera was used to assess whether

or not the room was inhabited. Every minute, the camera time-stamped an image, which was then manually

examined to categorize the data as occupied-room-status data or not-occupied-room-status data. Two of the

datasets were obtained (datatraining.txt and datatest.txt)53 and merged so that the final dataset had 10,808

entries. The dataset is unbalanced such that the “not-occupied” class constitutes the majority class. The

stratified splitting method was used to divide the dataset into training and test sets in the proportions of

80% and 20% respectively while retaining the original class distribution. This division was done in order

to ensure that the test set is not seen by the ML model during training and validation phases so that the

patterns in the test data are not learned by the model. The minority class of the training set was unsampled,

and the training set was further split into training and validation sets in the proportions of 75% and 25%,

respectively. Upsampling was done because most machine learning models are sensitive to class imbalance.

4.2 Model training

Six different classifiers were employed for performance evaluation. A range of supervised

classification algorithms was considered which included the following: Logistic Regression (LR), Random

Forest (RF), Decision Tree (DT), K-Nearest Neighbours (KNN), Support Vector Machines (SVM), and

Gradient Boosting Machine (GBM).

Logistic Regression

Logistic regression55 is a statistical method for modelling binomial outcomes. The input may include

one or more features (or variables) while the output of a binary logistic regression may be either 0 or 1,

allowing for the binary classification of positive and negative classes. While it may not capture complex

relationships as effectively as other models, its simplicity can yield strong baseline results, especially when

the dataset is linearly separable. Some strengths of LR include:

(i) Simplicity and Interpretability: Because logistic regression is a linear model, it is simple to

apply, analyse, and comprehend how features relate to the target class.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

27

(ii) Good for Linearly Separable Data: It is a powerful baseline model for classification issues and

works well when the data is linearly separable.

Decision Trees

Decision Trees56,57 are intuitive models that split data based on feature values to make predictions.

The leaf nodes of the tree are the set of classes being predicted. Their ease of visualization and interpretation

can significantly facilitate the comprehension of patterns. Pruning approaches or their usage in ensemble

methods like as RF may improve their performance, as they may suffer from overfitting when employed

alone. Some strengths of DT include:

(i) Interpretability: Decision trees give clear, visual decision rules that are simple to understand

and explain.

(ii) Handles Nonlinear Data: They do not need data transformation to represent complex

relationships and feature interactions.

Random Forest

Random Forest56,57 is an ensemble learning method that builds multiple decision trees and merges

them to improve accuracy and control overfitting. The idea behind RF is similar to asking several experts

for their opinions and then using their votes to make a decision. RF is an example of ensemble ML, where

individual ML models are first evaluated and then integrated into a single model that can often produce

superior predictive performance than the individual models.

(i) Handles Nonlinear Relationships: Random Forest works very well with a variety of datasets

because it can capture complex, nonlinear relationships between features.

(ii) Robustness and Overfitting Mitigation: It enhances model generalisation and lowers the

danger of overfitting by averaging many decision trees.

K-Nearest Neighbours

Because KNN55,56 is a non-probabilistic and non-parametric model, it is the top option for

classification studies with no previous knowledge of data distribution. The similarity measure (a distance

metric) serves as the basis for classification. Any unknown sample is categorised using the majority vote

of its k closest neighbours. The complexity of KNN grows as dimensionality increases, hence

dimensionality reduction procedures are undertaken before utilizing KNN to reduce the impacts of the curse

of dimensionality.

(i) Non-parametric Nature: KNN can adapt to different datasets since it makes no assumptions

about the underlying data distribution.

(ii) Flexibility: It can directly handle multiclass classification and does well on smaller datasets

with well-separated classes.

Support Vector Machines

The main goal of SVM55–57 classification technique is to create functions that locate the best

hyperplanes to separate the various classes in training data. This method could be regarded as an

'optimization' method, in which the greater margin between distinct classes in the training data yields the

best hyperplanes. Since SVM may adopt generalisation qualities, overfitting is successfully prevented in

the training phase.

(i) Effective in High-Dimensional Spaces: SVM works well in high-dimensional spaces when

there are many features relative to the number of samples.

(ii) Kernel Trick for Nonlinear Data: By using kernel functions like the radial basis function

(RBF), SVM is able to handle data that is nonlinearly separable.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

28

Gradient Boosting Machines

GBM is an ensemble technique that builds models sequentially, focusing on correcting errors made

by previous models. This method generally provides superior predictive accuracy compared to simpler

models due to its ability to capture complex relationships within data.

(i) Handles Complex Data Well: GBM is able to capture complex patterns because it builds

models iteratively, learning from past mistakes.

(ii) Customizable and Versatile: It is versatile and customizable, allowing for the fine-tuning of

parameters, such as the number of estimators and learning rate, to maximize performance for

particular datasets.

Each of the discussed ML algorithms has its own strength and uniqueness. They, therefore, make a

good combination from which our proposed Algorithms 3 can select based on their performances in order

to establish a robust ML model for partial feature availability scenarios.

4.3 Simulation settings

The correlation threshold between features was set to 0.8. If two features had correlation values of

0.8 or above, one of them was removed from the feature set. The correlation threshold between features

and the target variable was also set to 0.8. The partial features robustness threshold (Pth) was set to 90%.

The experiment was conducted on a PC with a Core i3 processor running Windows 10 operating system

and having 8 Gigabyte RAM. Python scripts were written to execute the 3 algorithms that were developed.

The hyperparameters shown in Table 2 were selected for training the machine learning models and

no attempt was made to optimize them.

Table 2. Hyperparameters of machine learning models and their values

Models Hyperparameters and values

LR Optimization solver = ‘lbfgs’ Maximum number of

iterations = 100

RF N_estimators = 100 Split criteria = ‘gini’ Feature considered for

splitting a node = ‘sqrt’

Use bootstrap = yes

DT Split criteria = ‘gini’ Max_depth = grow

until trees are pure

Min_samples_split = 2 Min_samples_leaf = 1

KNN Number of neighbors = 5 Weight of neighbors =

‘uniform’

Leaf size = 30 Parameter =

‘Euclidean distance’

SVM Kernel type = ‘rbf’ Gamma = ‘scale’ Tolerance for stopping

criteria = 10-3

GBM Number of estimators = 100 Learning rate = 0.1 Estimator max depth = 3 Min samples required

to split a node = 2

4.4 Experimental Results

In this section, we first determine whether the ML models underfit or overfit the occupancy dataset.

To do this, training subsets of increasing sizes were iteratively selected, and each model was trained on

them. For each training size, the models' performance was assessed on both the training and validation sets

by computing their respective accuracy scores. We plotted the training and validation accuracy over

multiple epochs for all 6 ML models as illustrated in Figures 2(a) through (f).

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

29

(a) (b) (c)

(d) (e) (f)

Fig. 2 Learning curves which show the training and validation scores as a function of the number of training samples
used in ML models which include: (a) Logistic regression, (b) Random Forest, (c) Decision tree, (d) K-nearest
neighbours, (e) Support vector machine, and (f) Gradient boosting machine.

In machine learning, if a model has low training and low validation accuracies (high bias), the model

fails to capture the complexity of the data and therefore underfits it. Conversely, if a model has high training

accuracy but low validation accuracy (high variance), the model memorizes the training data and overfits

it, leading to poor generalisation. Figures 2(a) through (f) show that the training curves displayed high

accuracy, indicating effective learning from the training data. The validation curves also reached a similarly

high accuracy without showing a significant gap from the training curve. These alleviate concerns of

underfitting and overfitting and affirm the high generalizability of our 6 trained ML models.

In order to observe the impact of partial feature availability problems on the performance of the ML

models, we present 3 groups of results for each category of experiment. The first group, labelled as

"All features (validation)", are instances where correlation-based feature selection described in Algorithm 2

was not performed on the validation experiment result. In this case, a high correlation may exist between a

feature and the ground truth. The second group is similar to the first group except that the figures are

labelled as "All features (test)", which denotes the results of the testing experiment. Hence, just like the

first group, a high correlation between a feature and the ground truth may exist. Furthermore, the third

group has the label "partial features" which represents instances where Algorithm 2 has been executed to

filter off features that share a high correlation with the ground truth. Additionally, we present a set of

results58 found in the literature that are labelled as “benchmark”. They are included to provide insight

regarding the performance values of a published work that used similar models and the same dataset as

ours. It should be noted that these benchmark results, which were obtained by Alam et al.58, have not

considered potential partial feature availability problems and may likely perform poorly under this

condition.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

30

 (a) Benchmark58 (b) All features (validation)

 (c) All features (test) (d) Partial features

Fig. 3 Accuracy of 6 classifiers: (a) result of benchmark algorithm which is susceptible to degradation by partial feature
availability problem, (b) validation result of proposed algorithms which is susceptible to degradation by partial feature
availability problem, (c) test result of proposed algorithm which is susceptible to degradation by partial feature
availability problem (d) result of proposed algorithms with partial feature availability problem introduced.

Fig. 3(a), 4(a), 5(a), and 6(a) are the accuracy, precision, recall, and F1-scores of the benchmark

model. It can be observed that all benchmark results exceed 97.0% performance score which is impressive.

However, if subjected to the partial feature availability problem, these performance values will likely drop

significantly. Fig. 3(b), 3(c), and 3(d) show the accuracies of the proposed ML models. Specifically,

Fig. 3(b) shows the accuracy results of the validation experiment, Fig. 3(c) shows the testing experiment

accuracy results, and Fig. 3(d) shows the results where the partial feature availability problem has been

considered. It can be observed in Fig. 3(b) and (c) that all the ML models yielded high accuracy

performances when the partial feature availability issue was ignored. However, in Fig. 3(d), most of the

accuracy values dropped when the partial feature availability issue was considered. Specifically, the SVM

model in Fig. 3(d) had the highest drop in accuracy value, while the RF model had the lowest.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

31

 (a) Benchmark58 (b) All features (validation)

 (c) All features (test) (d) Partial features

Fig. 4. Precision scores of 6 classifiers: (a) result of benchmark algorithm which is susceptible to degradation by partial
feature availability problem, (b) validation result of proposed algorithms which is susceptible to degradation by partial
feature availability problem, (c) test result of proposed algorithm which is susceptible to degradation by partial feature
availability problem (d) result of proposed algorithms with partial feature availability problem introduced.

Fig. 4(b) and (c) show the precision scores of the ML models when the partial feature availability

issue was ignored while Fig. 4(d) shows the precision scores of the ML models when the partial feature

availability issue was considered. It is evident in Fig. 4(b) and (c) that all models have high precision values

exceeding 98%. However, most of the precision values dropped when the partial feature availability issue

is considered in Fig. 4(d). In this figure, the RF model exhibited the least drop in precision value, while the

LR, KNN, and the SVM models experienced more significant drops.

Illustrated in Fig. 5(b) and (c) are the recall scores of the 6 ML models when the partial feature

availability problem was ignored while Fig. 5(d) shows the recall scores of the ML models when the partial

feature availability issue was considered. It can be observed in Fig. 5(b) and (c) that all models had high

recall scores when the partial feature availability issue was ignored, but when it was considered in Fig. 5(d),

the performances of some of the models depreciated significantly. For example, the recall scores of SVM

and KNN dropped by about 20% each when compared to the results of the test experiment. The RF and DT

models, on the other hand, experienced only a small decrease in their recall scores.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

32

 (a) Benchmark58 (b) All features (validation)

 (c) All features (test) (d) Partial features

Fig. 5. Recall scores of 6 classifiers: (a) result of benchmark algorithm which is susceptible to degradation by partial
feature availability problem, (b) validation result of proposed algorithms which is susceptible to degradation by partial
feature availability problem, (c) test result of proposed algorithm which is susceptible to degradation by partial feature
availability problem (d) result of proposed algorithms with partial feature availability problem introduced.

Fig. 6(b) and (c) show the F1-Scores of the 6 ML models when the partial feature availability issue

was ignored while Fig. 6(d) shows the F1-Scores of the ML models when the partial feature availability

issue was considered. It can be seen in Fig. 6(b) and (c) that all models have high F1-scores when the partial

feature availability issues were ignored. However, with the partial feature availability problem considered

(in Fig. 6(d)), some of them decreased in value. For example, compared to the test experiment in Fig. 6(c),

the F1-score of KNN decreased from 97.5% to 82.5%, while that of LR decreased from 97.1% to 82.4%.

Again, similar to the previous results, the F1-score of the RF and DT models were least affected by the

partial feature availability problem.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

33

(a) Benchmark58 (b) All features (validation)

 (c) All features (test) (d) Partial features

Fig. 6. F1-scores of 6 classifiers: (a) result of benchmark algorithm which is susceptible to degradation by partial feature
availability problem, (b) validation result of proposed algorithms which is susceptible to degradation by partial feature
availability problem, (c) test result of proposed algorithm which is susceptible to degradation by partial feature
availability problem (d) result of proposed algorithms with partial feature availability problem introduced.

4.5 Discussion

In the previous subsection, simulation results showed that when the partial feature availability

problem was ignored, the performances of most of the ML models were satisfactory but plummeted when

it was considered. However, not all models were seriously adversely impacted by the problem. To

determine the robustness of the machine learning models against the partial feature availability problem,

Algorithm 3 was applied. Recall that Algorithm 3 has two parts. The first part generated binary values for

vectors [𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Pre]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Rec]𝑤=1

𝑊 , and [𝑀𝑜𝑑𝑤
F1]𝑤=1

𝑊 while the second part used a

bitwise-AND operator to determine the partial-feature-robustness vector [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
. When

Algorithm 3 was applied, the values of the binary vectors generated by the first part of the algorithm were:
[𝑀𝑜𝑑𝑤

Acc]𝑤=1
𝑊 = 111101, [𝑀𝑜𝑑𝑤

Pre]𝑤=1
𝑊 = 011011, [𝑀𝑜𝑑𝑤

Rec]𝑤=1
𝑊 = 011000, and [𝑀𝑜𝑑𝑤

F1]𝑤=1
𝑊 = 011001.

To explain these vectors, let us use [𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 = 111101 as an example. Observe that in the vector

[𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 , all the binary digits are "1" with the exception of the 5th digit which is a "0". If Fig. 3(d) is

observed, it can be seen that the values of accuracies of the 6 ML models considered are LR = 91.44%,

RF = 98.77%, DT = 98.2%, KNN = 91.06%, SVM = 89.92%, and GBM = 95.36%. In these accuracy

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

34

results, it can be seen that the accuracies of all models with the exception of the 5th model (SVM) exceeded

Pth (where Pth = 90%). Based on the binarisation procedure of Algorithm 3, it implies that at w = 5,

𝑀𝑜𝑑𝑤
Accis set to a value of "0" but set to a value of "1" in all other instances of w. This explains why

[𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 has a value of 111101. The values of the other vectors [𝑀𝑜𝑑𝑤
Pre]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Rec]𝑤=1

𝑊 , and

[𝑀𝑜𝑑𝑤
F1]𝑤=1

𝑊 are computed in a similar way. The final output of Algorithm 3, [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
, is determined

based on the bitwise-AND operation shown in Table 3:

Table 3. Illustration of the bitwise AND operation of Algorithm 3

 w = 1 w = 2 w = 3 w = 4 w = 5 w = 6

 LR RF DT KNN SVM GBM

𝑀𝑜𝑑𝑤
Acc 1 1 1 1 0 1

𝑀𝑜𝑑𝑤
Pre 0 1 1 0 1 1

𝑀𝑜𝑑𝑤
Rec 0 1 1 0 0 0

𝑀𝑜𝑑𝑤
F1 0 1 1 0 0 1

Bitwise AND

Operation

(𝑀𝑜𝑑𝑤
T_rob

)

0 1 1 0 0 0

From the result shown in Table 3, it can be seen that the value of the partial features robustness

vector is [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
= 011000. This implies that the RF and DT are robust against partial feature

availability problems for the scenario considered. This is because they occupy the 2nd and 3rd-bit positions

of [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
 vector which are the only bit positions having values of "1" in the vector. This is

confirmed by Fig. 3 through 6 where it was observed that the RF and DT machine learning models

outperformed all the other ML models considered based on the chosen performance metrics. Therefore, for

the combination of sensors considered in this work, deploying indoor occupancy detection systems that are

based on RF and DT models stands a high chance of success in real environments.

5 CONCLUSION

In this paper, data from environmental sensors was applied to machine learning-based classification

models to predict the occupancy status of an enclosed space. Three algorithms were developed, namely

outlier removal, feature selection, and partial-feature-aware ML model selection algorithms. The machine

learning models considered in this study included Logistic Regression (LR), Random Forest (RF), Decision

Tree (DT), K-Nearest Neighbours (KNN), Support Vector Machines (SVM), and Gradient Boosting

Machines (GBM) models. These models were applied to publicly available data from environmental

sensors such as temperature, humidity, carbon dioxide (CO2), and light sensors. It was observed that most

of the ML models initially yielded high-performance results but were vulnerable to issues related to partial

feature availability. However, further simulation experiments, which accounted for the partial feature

availability issue considered, showed that only the RF and DT models were less affected by the partial

feature availability problem and were therefore recommended for deployment in real environments using

the combination of sensors considered in this study. Further experimental studies will be conducted as part

of our future work.

ACKNOWLEDGEMENTS/ FUNDING

The authors declare that they have no known competing financial interests or funding to declare.

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

35

CONFLICT OF INTEREST

The authors agree that this research was conducted in the absence of any self-benefits, commercial or

financial conflicts and declare the absence of conflicting interests with the funders.

AUTHORS’ CONTRIBUTIONS

Conceptualization: A. S. Afolabi

Data curation: A. S. Afolabi & O. A. Odetoye

Methodology: A. S. Afolabi & O. A. Akinola

Formal analysis: A. S. Afolabi & E. Adetiba

Visualisation: O. A. Akinola

Software: A. S. Afolabi

Writing (original draft): A. S. Afolabi, O. A. Akinola, O. A. Odetoye, & E. Adetiba

Writing (review and editing): A. S. Afolabi, O. A. Akinola, O. A. Odetoye, & E. Adetiba

Validation: E. Adetiba

Supervision: O. A. Akinola & E. Adetiba

Funding acquisition: Not applicable

Project administration: Not applicable

REFERENCES

1. Mosaico, G., Saviozzi, M., Silvestro, F., Bagnasco, A., & Vinci, A. (2019). Simplified state space
building energy model and transfer learning based occupancy estimation for HVAC optimal control.
In Innovation to shape the future. 5th International Forum on Research and Technology for Society
and Industry (RTSI), (pp. 353–358). Florence, Italy. https://doi.org/10.1109/RTSI.2019.8895544

2. Acquaah, Y., Steele, J. B., Gokaraju, B., Tesiero, R., & Monty, G. H. (2020). Occupancy detection for
smart HVAC efficiency in building energy: A deep learning neural network framework using thermal
imagery. In Applied Imagery Pattern Recognition Workshop (AIPR) (pp. 1–6). Washington DC, USA.
https://doi.org/10.1109/AIPR50011.2020.9425091

3. Acquaah, Y. T., Gokaraju, B., Tesiero, R. C., & Monty, G. H. (2021). Thermal imagery feature
extraction techniques and the effects on machine learning models for smart HVAC efficiency in
building energy. Remote Sensing, 13(19), 3847. https://doi.org/10.3390/rs13193847

4. Do, H. M., Pham, M., Sheng, W., Yang, D., & Liu, M. (2018). RiSH: A robot-integrated smart home
for elderly care. Robotics and Autonomous Systems, 101, 74–92.
https://doi.org/10.1016/j.robot.2017.12.008

5. Tan, B., Chen, Q., Chetty, K., Woodbridge, K., Li, W., & Piechocki, R. (2018). Exploiting WiFi channel
state information for residential healthcare informatics. IEEE Communications Magazine, 56(5),
130-137. https://doi.org/10.1109/MCOM.2018.1700064

6. Harrou, F., Zerrouki, N., Sun, Y., & Houacine, A. (2019). An integrated vision-based approach for
efficient human fall detection in a home environment. IEEE Access, 7, 114966–114974.
https://doi.org/10.1109/ACCESS.2019.2936320

7. Bocus, M. J., & Piechocki, R. (2022). A comprehensive ultra-wideband dataset for non-cooperative
contextual sensing. Scientific Data, 9(1), 650. https://doi.org/10.1038/s41597-022-01776-7

8. Shah, S. A., Ahmad, J., Tahir, A., Ahmed, F., Russell, G., Shah, S. Y., Buchanan, W. J., & Abbasi, Q.
H. (2020). Privacy-preserving non-wearable occupancy monitoring system exploiting Wi-Fi imaging
for next-generation body centric communication. Micromachines, 11(4), 379.
https://doi.org/10.3390/mi11040379

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

36

9. Singh, R., Pai, N., & Mahapatra, S. (2022). Enabling smart building applications on the edge using
artificial intelligence. In Smarter technologies for a sustainable and hyper-connected world, Women
in Technology Conference (WINTECHCON) (pp. 1–6). Bangalore, India.
https://doi.org/10.1109/WINTECHCON55229.2022.9832044

10. Demrozi, F., Turetta, C., Chiarani, F., Kindt, P. H., & Pravadelli, G. (2021). Estimating indoor
occupancy through low-cost BLE devices. IEEE Sensors Journal, 21(15), 17053–17063.
https://doi.org/10.1109/JSEN.2021.3080632

11. Leeraksakiat, P., & Pora, W. (2020). Occupancy forecasting using LSTM neural network and transfer
learning. In 17th International Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON), (pp. 470–473). Phuket, Thailand.
https://doi.org/10.1109/ECTI-CON49241.2020.9158103

12. Zou, H., Zhou, Y., Yang, J., & Spanos, C. J. (2018). Device-free occupancy detection and crowd
counting in smart buildings with WiFi-enabled IoT. Energy and Buildings, 174, 309–322.
https://doi.org/10.1016/j.enbuild.2018.06.040

13. Yang, J., Pantazaras, A., Chaturvedi, K. A., Chandran, A. K., Santamouris, M., Lee, S. E., & Tham, K.
W. (2018). Comparison of different occupancy counting methods for single system-single zone
applications. Energy and Buildings, 172, 221–234. https://doi.org/10.1016/j.enbuild.2018.04.051

14. Chen, Z., Jiang, C., & Xie, L. (2018). Building occupancy estimation and detection: A review. Energy
and Buildings, 169, 260–270. https://doi.org/10.1016/j.enbuild.2018.03.084

15. Zhang, T., & Ardakanian, O. (2019). A domain adaptation technique for fine-grained occupancy
estimation in commercial buildings. In Advancing Computing as a Science & Profession. International
Conference on Internet of Things Design and Implementation (IoTDI) (pp. 148–159). Montreal
Quebac, Canada. https://doi.org/10.1145/3302505.3310077

16. Elkhoukhi, H., Bakhouya, M., Hanifi, M., & El Ouadghiri, D. (2019). On the use of deep learning
approaches for occupancy prediction in energy efficient buildings. In 7th International Renewable and
Sustainable Energy Conference (IRSEC) (pp. 1–6). Agadir, Morocco.
https://doi.org/10.1109/IRSEC48032.2019.9078164

17. Szagri, D., Dobszay, B., Nagy, B., & Szalay, Z. (2022). Wireless temperature, relative humidity and
occupancy monitoring system for investigating overheating in buildings. Sensors, 22(22), 8638.
https://doi.org/10.3390/s22228638

18. O’Grady, T., Chong, H.-Y., & Morrison, G. M. (2021). A systematic review and meta-analysis of
building automation systems. Building and Environment, 195, 107770.
https://doi.org/10.1016/j.buildenv.2021.107770

19. Wagner, D. N., Mathur, A., & Boor, B. E. (2021). Spatial seated occupancy detection in offices with a
chair-based temperature sensor array. Building and Environment, 187, 107360.
https://doi.org/10.1016/j.buildenv.2020.107360

20. Yuan, L., Andrews, J., Mu, H., Vakil, A., Ewing, R., Blasch, E., & Li, J. (2022). Interpretable passive
multi-modal sensor fusion for human identification and activity recognition. Sensors, 22(15), 5787.
https://doi.org/10.3390/s22155787

21. Hu, S., Wang, P., Hoare, C., & O’Donnell, J. (2023). Building occupancy detection and localization
using CCTV camera and deep learning. IEEE Internet of Things Journal, 10(1), 597–608.
https://doi.org/10.1109/JIOT.2022.3201877

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

37

22. Ding, Y., Han, S., Tian, Z., Yao, J., Chen, W., & Zhang, Q. (2022). Review on occupancy detection
and prediction in building simulation. Building Simulation, 15, 333–356.
https://doi.org/10.1007/s12273-021-0813-8

23. Zhang, R., Kong, M., Dong, B., O’Neill, Z., Cheng, H., Hu, F., & Zhang, J. (2022). Development of a
testing and evaluation protocol for occupancy sensing technologies in building HVAC controls: A case
study of representative people counting sensors. Building and Environment, 208, 108610.
https://doi.org/10.1016/j.buildenv.2021.108610

24. Matuska, S., Machaj, J., Hudec, R., & Kamencay, P. (2022). An improved IoT-based system for
detecting the number of people and their distribution in a classroom. Sensors, 22(20), 7912.
https://doi.org/10.3390/s22207912

25. Song, C., Droitcour, A. D., Islam, S. M. M., Whitworth, A., Lubecke, V. M., & Boric-Lubecke, O.
(2023). Unobtrusive occupancy and vital signs sensing for human building interactive systems.
Scientific Reports, 13, 954. https://doi.org/10.1038/s41598-023-27425-6

26. Liu, Y., Wang, T., Jiang, Y., & Chen, B. (2022). Harvesting ambient RF for presence detection through
deep learning. IEEE Transactions on Neural Networks and Learning Systems, 33(4), 1571–1583.
https://doi.org/10.1109/TNNLS.2020.3042908

27. Azam, M., Blayo, M., Venne, J.-S., & Allegue-Martinez, M. (2019). Occupancy estimation using wifi
motion detection via supervised machine learning algorithms. In Global Conference on Signal and
Information Processing (GlobalSIP) (pp. 1–5). Ottawa, Canada.
https://doi.org/10.1109/GlobalSIP45357.2019.8969297

28. Ahmad, J., Larijani, H., Emmanuel, R., Mannion, M., & Javed, A. (2021). Occupancy detection in non-
residential buildings – A survey and novel privacy preserved occupancy monitoring solution. Applied
Computing and Informatics, 17(2), 279–295. https://doi.org/10.1016/j.aci.2018.12.001

29. Amayri, M., Ploix, S., Bouguila, N., & Wurtz, F. (2019). Estimating occupancy using interactive
learning with a sensor environment: Real-time experiments. IEEE Access, 7, 53932–53944.
https://doi.org/10.1109/ACCESS.2019.2911921

30. Emad-ud-Din, M., Chen, Z., Wu, L., Shen, Q., & Wang, Y. (2022). Indoor occupancy estimation using
particle filter and SLEEPIR sensor system. IEEE Sensors Journal, 22(17), 17173–17183.
https://doi.org/10.1109/JSEN.2022.3192270

31. Pratama, A. R., Lazovik, A., & Aiello, M. (2019). Office multi-occupancy detection using BLE beacons
and power meters. In 10th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON) (pp. 0440–0448). New York, USA.
https://doi.org/10.1109/UEMCON47517.2019.8993008

32. Oshima, H., Ishizone, T., Nakamura, K., & Higuchi, T. (2022). Occupancy detection for general
households by bidirectional LSTM with attention. In IECON 48th Annual Conference of the IEEE
Industrial Electronics Society (pp. 1–7). Brussels, Belgium.
https://doi.org/10.1109/IECON49645.2022.9968594

33. Kwon, S.-Y., & Lee, S. (2022). In-vehicle seat occupancy detection using ultra-wideband radar sensors.
In 23rd International Radar Symposium (IRS) (pp. 275–278). Gdansk, Poland.
https://doi.org/10.23919/IRS54158.2022.9905064

34. Odetoye, O. A., Afolabi, A. S., & Akinola, O. A. (2020). Development and scaled-up simulation of an
automated electrical energy management system for passageway illumination. International Journal
of Emerging Electric Power Systems, 21(6), 20200124. https://doi.org/10.1515/ijeeps-2020-0124

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

38

35. Andrews, J., Kowsika, M., Vakil, A., & Li, J. (2020). A Motion Induced Passive Infrared (PIR) sensor
for stationary human occupancy detection. In IEEE/ION Position, Location and Navigation
Symposium (PLANS) (pp. 1295–1304). Portland, USA.
https://doi.org/10.1109/PLANS46316.2020.9109909

36. Ahmad Mahmud, N. F., & Azuana Ramli, N. (2020). Hybrid classification method to detect the
presence of human in a smart building environment. In International Conference on Data Analytics
for Business and Industry: Way Towards a Sustainable Economy (ICDABI) (pp. 1–5). Sakheer,
Bahrain. https://doi.org/10.1109/ICDABI51230.2020.9325671

37. Aromolaran, O., Beder, T., Adedeji, E., Ajamma, Y., Oyelade, J., Adebiyi, E., & Koenig, R. (2021).
Predicting host dependency factors of pathogens in Drosophila melanogaster using machine learning.
Computational and Structural Biotechnology Journal, 19, 4581–4592.
https://doi.org/10.1016/j.csbj.2021.08.010

38. Adetiba, E., Ajayi, O. T., Kala, J. R., Badejo, J. A., Ajala, S., Abayomi, A., Badejo, J. A., Adetiba, E.,
& Adetiba, E. (2021). LeafsnapNet: An experimentally evolved deep learning model for recognition
of plant species based on leafsnap image dataset. Journal of Computer Science, 17(3), 349–363.
https://doi.org/10.3844/jcssp.2021.349.363

39. Domingos, E., Ojeme, B., & Daramola, O. (2021). Experimental analysis of hyperparameters for deep
learning-based churn prediction in the banking sector. Computation, 9(3), 34.
https://doi.org/10.3390/computation9030034

40. Feng, C., Mehmani, A., & Zhang, J. (2020). Deep learning-based real-time building occupancy
detection using AMI data. IEEE Transactions on Smart Grid, 11(5), 4490–4501.
https://doi.org/10.1109/TSG.2020.2982351

41. Parise, A., Manso-Callejo, M. A., Cao, H., Mendonca, M., Kohli, H., & Wachowicz, M. (2019). Indoor
occupancy prediction using an IoT platform. In Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS) (pp. 26–31). Granada, Spain.
https://doi.org/10.1109/IOTSMS48152.2019.8939234

42. Khalil, M., McGough, S., Pourmirza, Z., Pazhoohesh, M., & Walker, S. (2021). Transfer learning
approach for occupancy prediction in smart buildings. In 12th International Renewable Engineering
Conference (IREC) (pp. 1–6). Amman, Jordan. https://doi.org/10.1109/IREC51415.2021.9427869

43. Fayed, N. S., Elmogy, M. M., Atwan, A., & El-Daydamony, E. (2022). Efficient occupancy detection
system based on neutrosophic weighted sensors data fusion. IEEE Access, 10, 13400–13427.
https://doi.org/10.1109/ACCESS.2022.3146346

44. Mutis, I., Ambekar, A., & Joshi, V. (2020). Real-time space occupancy sensing and human motion
analysis using deep learning for indoor air quality control. Automation in Construction, 116, 103237.
https://doi.org/10.1016/j.autcon.2020.103237

45. Kim, J., Min, K., Jung, M., & Chi, S. (2020). Occupant behavior monitoring and emergency event
detection in single-person households using deep learning-based sound recognition. Building and
Environment, 181, 107092. https://doi.org/10.1016/j.buildenv.2020.107092

46. Ng, P. C., & She, J. (2019). Denoising-contractive autoencoder for robust device-free occupancy
detection. IEEE Internet of Things Journal, 6(6), 9572–9582. https://doi.org/10.1109/JIOT.2019.2929822

47. Wang, Z., Hong, T., Piette, M. A., & Pritoni, M. (2019). Inferring occupant counts from Wi-Fi data in
buildings through machine learning. Building and Environment, 158, 281–294.
https://doi.org/10.1016/j.buildenv.2019.05.015

 Afolabi et al. / Journal of Smart Science and Technology (2025) Vol. 5, No. 1

https://doi.org/10.24191/jsst.v5i1.101

 ©Authors, 2025

39

48. Kapoor, S., & Narayanan, A. (2023). Leakage and the reproducibility crisis in machine-learning-based
science. Patterns, 4(9), 100804. https://doi.org/10.1016/j.patter.2023.100804

49. Rosenblatt, M., Tejavibulya, L., Jiang, R., Noble, S., & Scheinost, D. (2024). Data leakage inflates
prediction performance in connectome-based machine learning models. Nature Communications,
15(1), 1829. https://doi.org/10.1038/s41467-024-46150-w

50. Suresh, L. P., & Kalidindi, N. R. (2022). Study of test for significance of Pearson’s correlation
coefficient. International Journal of Science and Research (IJSR), 11(10), 164–166.
https://doi.org/10.21275/SR22915140002

51. Ye, W., Zheng, G., Cao, X., Ma, Y., & Zhang, A. (2024). Spurious correlations in machine learning: A
survey (Version 2). arXiv. https://doi.org/10.48550/arXiv.2402.12715

52. Afolabi, A. S., & Akinola, O. A. (2024). Network intrusion detection using knapsack optimization,
mutual information gain, and machine learning. Journal of Electrical and Computer Engineering,
20244(1), 7302909 https://doi.org/10.1155/2024/7302909

53. Candanedo, L. (2016). Occupancy Detection [Dataset]. UCI Machine Learning Repository.
https://doi.org/10.24432/C5X01N

54. Candanedo, L. M., & Feldheim, V. (2016). Accurate occupancy detection of an office room from light,
temperature, humidity and CO2 measurements using statistical learning models. Energy and Buildings,
112, 28–39. https://doi.org/10.1016/j.enbuild.2015.11.071

55. Shanthamallu, U. S., Spanias, A., Tepedelenlioglu, C., & Stanley, M. (2017). A brief survey of machine
learning methods and their sensor and IoT applications. In 8th International Conference on
Information, Intelligence, Systems & Applications (IISA) (pp. 1–8). Larnaca, Cyprus.
https://doi.org/10.1109/IISA.2017.8316459

56. Shahriar, S., Al-Ali, A. R., Osman, A. H., Dhou, S., & Nijim, M. (2020). Machine learning approaches
for EV charging behavior: A review. IEEE Access, 8, 168980–168993.
https://doi.org/10.1109/ACCESS.2020.3023388

57. Mansi, M., Almobarak, M., Ekundayo, J., Lagat, C., & Xie, Q. (2024). Application of supervised
machine learning to predict the enhanced gas recovery by CO2 injection in shale gas reservoirs.
Petroleum, 10(1), 124–134. https://doi.org/10.1016/j.petlm.2023.02.003

58. Alam, S., Sari, R. M., Alfian, G., & Farooq, U. (2024). Room occupancy detection based on random
forest with timestamp features and ANOVA feature selection method. Journal of Computing Science
and Engineering, 18(1), 10–18. https://doi.org/10.5626/JCSE.2024.18.1.10

