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 Detecting the occupancy status of enclosed spaces has been immensely 

beneficial in the automated control of HVACs (heating, ventilation, and 

cooling systems), providing assistance to the elderly, healthcare 

provisioning, recognition of human activity, and others. As a result of 

these benefits, a plethora of machine learning-based solutions for 

occupancy detection has been developed in the literature. However, 

many of these solutions have poor prediction accuracies. Furthermore, 

it is necessary to develop models that are robust enough to achieve 

acceptable performance in situations where partial data from sensors are 

available. In this paper, we experimentally determined the Machine 

Learning (ML) models that are most robust for use in indoor occupancy 

detection. This is important because the activities of human subjects in 

an ML environment are capable of disrupting the data available to some 

deployed ML models, which might cause the performance of such 

models to drop. Hence, it is crucial to determine ML models that are 

robust against such disruptions. In this paper, three algorithms were 

developed: the first was for outlier removal from features, the second 

was for feature selection, and the third was for partial-features-

availability-aware ML model selection. These algorithms were applied 

to data from environmental sensors such as temperature, humidity, 

carbon dioxide (CO2), and light sensors, and afterward. The resulting 

data was used to train six different ML-based classifiers. The classifiers 
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1 INTRODUCTION 

Human occupancy detection, which involves detecting the presence of people in a building, is a vital 

task that has, in recent times, been shown to have numerous benefits. For example, it has encouraged the 

creation of several smart applications in a variety of relevant contexts such as automated control of heating, 

ventilation, and cooling systems (HVACs)1–3 providing assistance to the elderly4, healthcare provision5,6, 

recognition of human activity7,8 to name a few. Occupancy detection has also accelerated the development 

of smart buildings9,10. Technologies for detecting occupancy and estimating the number of individuals in a 

space are roughly classified as: a) room installation devices11,12, and b) body-worn devices13. In practice, 

constantly wearing gadgets is inconvenient, therefore, researchers have recently focused on systems that 

rely solely on devices installed within the room infrastructure10,14. 

In the built environment, there are two major techniques for determining occupants’ presence and 

count15. The first method is the physics-based model, which predicts occupancy using estimated internal 

heat gain in rooms, considering factors such as size, layout, and building envelope. The second is the 

data-driven model which detects user presence in buildings and is less complex than the physics-based 

models. However, generating the data-driven model requires a lengthy training process and a large amount 

of tagged occupancy data, which may be unavailable for diverse rooms and buildings. 

One of the most important applications of occupancy detection systems is their use in smart 

buildings for the automatic control of appliances. Some occupancy characteristics that might be employed 

as key control inputs in a smart home include16: a) the presence of occupants can be utilized to switch active 

equipment on or off when the part of the evaluated building is inhabited or empty; b) the number of 

occupants can be utilized to accurately manage independent ventilation systems. 

There have been many initiatives to monitor building occupancy using wired and wireless sensor 

networks. For example, some research studies combined motion sensor data with information from 

magnetic reed switches17,18, while others used temperature sensor arrays19, passive infrared (PIR) sensors20, 

cameras21, or ambient sensors22 to estimate the room-level occupancy status (i.e., occupant presence or 

count). Also, non-environmental sensors like RFID (radio frequency identifier) sensors23, ultrasonic 

sensors24, pressure-based sensors23, Doppler radar-based sensors25, depth sensors23, and radio frequency 

(Wi-Fi signal)26–28 are used in applications for occupancy detection. Due to the randomness and complexity 

of occupancy, it can be quantified using a mathematical model. Existing work on occupancy models can be 

classified into two categories, that is, Mathematical model-based (probability) and Machine Learning (ML) 

model-based.  

Mathematical model-based: The Mathematical model-based approach can be further classified into 

deterministic models and stochastic models. In this approach, deterministic scheduling uses long-term 

monitoring and occupancy statistics to generate probability distributions, which aid in estimating group 

activity patterns and developing probabilistic models29. Researchers explore the relationship between 

occupant behaviour and environmental stimulus using stochastic processes, and treat room occupancy as a 

random variable with the probability of occupancy state computed at each time point30,31.  

considered in this paper were Logistic Regression (LR), Random Forest 

(RF), Decision Tree (DT), K-Nearest Neighbours (KNN), Support 

Vector Machines (SVM), and Gradient Boosting Machines (GBM). 

Simulation experiments revealed that only the RF and DT models are 

robust against the partial features availability problem, achieving at least 

90% performance scores across all the considered metrics. 
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Machine Learning model-based: This is a more realistic and accurate approach that employs data 

mining. It can predict future development paths using artificial intelligence methods such as ANNs 

(Artificial Neural Networks), decision trees, Support Vector Machines (SVM), logistic regression, and 

Bayesian networks26,32,33. 

2 RELATED WORKS 

Odetoye et al.34 considered a PIR sensor-based occupancy detection strategy for energy 

management. However, PIR sensors struggle to accurately identify stationary humans, leading to false 

negatives. To improve accuracy, artificial intelligence methods can be applied to sensor data35,36. In recent 

times, machine learning and artificial intelligence have been applied to problems in diverse sectors 

including health37, agriculture38, and banking39 just to name a few. It has also been extended to occupancy 

detection as several studies26,32,33 on occupancy detection have explored the use of artificial neural 

networks. 

Feng et al.40 proposed an ANN-based occupancy detection approach in which a Convolutional 

Neural Network (CNN) and a Long Short-Term Memory (LSTM) network were employed to create a deep 

learning model. Praise et al.41 used SVM to develop an occupancy detection model using temperature, 

humidity, carbon dioxide (CO2), sound, pressure, and PIR motion sensors. In their work, two sensor nodes 

delivered data in real-time to a Raspberry pi gateway and cloud for analytics, and an SVM model classified 

data into “occupied” and “not occupied” states using a hyper-plane. 

Many studies have considered the use of decision trees27,31 in occupancy detection. For example, 

Mahmud et al.36 used a decision tree classifier for occupancy detection. Data from two sensors (PIR and 

active infrared sensors) were used to train their model. However, this classifier exhibited poor accuracy and 

high variance, leading to incorrect data categorisation. Particularly, the accuracy achieved by the classifier 

was 67.6%. In an attempt to boost this accuracy, a decision tree classifier was hybridised with a K-Nearest 

Neighbour classifier, but this did not yield any improvement.  

An LSTM model was employed for detecting occupancy by Khalil et al.42. The model was applied 

to three office spaces in an educational institution case study. The final findings showed that stacked LSTM 

with a transfer learning architecture was able to predict occupancy, but it still needed accuracy 

improvement. Specifically, the accuracy achieved was 71%. 

Fayed et al.43 used the Neutrosophy method to improve the accuracy of different occupancy 

classifiers which include Linear Discriminant Analysis (LDA), K-Nearest Neighbours (KNN), Naive Bayes 

(NB), Support Vector Machine (SVM), and Random Forest (RF). Interestingly, their approach successfully 

increased the accuracies of each of the classifiers. However, several existing machine learning-based 

studies on occupancy suffer from performance issues, with low accuracy being a prevalent shortcoming. 

This is evidenced in the summary of some existing works in Table 1. 

Apart from issues related to low accuracy, another challenge that may arise in ML-based occupancy 

detection models is the issue of data leakage. This factor is sometimes ignored in machine learning-based 

experiments. Data leakage can lead to inflated results for trained ML models. Leakage is not a novel issue 

in machine learning. However, according to Kapoor and Narayanan48, there is no thorough investigation on 

leakage in ML-based science, therefore, mitigation solutions for data leakage in scientific ML applications 

are still not well understood. 
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Table 1. A summary of existing works on occupancy detection 

Author(s) Methodology Type of enclosed 

space 

Sensor(s) used Performance Limitation(s) 

Mutis et al.44  Occupants were detected 

and counted using deep 

Convolutional Neural 

Network 

Office Surveillance 

camera 

Accuracy = 84% Relatively 

low accuracy 

 

Kim et al.45 Activities of occupants 

were detected using Long 

Short Term Memory 

Networks and 

Convolutional Neural 

Network 

Residential Acoustic 

sensor 

Precision = 78% 

F1-score =83.9% 

Recall = 90.8% 

Relatively 

low precision 

and F1-scores 

 

Elkhoukhi et al.16 Occupants were detected 

and counted using Long 

Short Term Memory 

Networks 

Laboratory CO2 sensor Accuracy = 70% Relatively 

low accuracy 

 

Ng et al.46 Occupants were detected 

using RF fingerprinting 

Laboratory Bluetooth low 

energy 

Accuracy = 90% Required 

Cloud 

processing 

Mahmud et al.36  Occupants were detected 

using Decision Tree and K-

Nearest Neighbours 

Office Passive 

infrared 

sensor and 

active infrared 

sensor 

Accuracy = 67% Relatively  

low accuracy 

Parise et al.41 Occupants detected using 

support vector machines 

classifier 

Classroom Temperature, 

humidity, 

pressure, PIR, 

acoustic 

sensors 

Accuracy = 96% Cloud 

Processing 

required 

Wang et al.47 Occupants detected and 

counted using the random 

forest classifier 

Office Wi-Fi device Accuracy = 84% Relatively 

low 

accuracy 

 

Kapoor and Narayanan48 described data leakage as a flaw in ML that leads to overoptimistic results. 

One type of data leakage is target leakage49, that occurs when a feature used in developing an ML model is 

unavailable when making predictions. Due to the human activities in spaces where environmental sensors 

are deployed, sensor data may be disrupted, leading to the non-availability of certain features which have 

been previously used for training prior to model deployment, therefore, causing a condition which we refer 

to as “partial feature availability” problem, a condition similar to target leakage. Consequently, this could 

lead to a decline in the model’s performance. To address this, a potential partial feature availability problem 

in this paper is anticipated and thus, the three algorithms aimed at ensuring acceptable model performance 

are developed. 

3 MATERIALS AND METHODS 

The general framework of the proposed occupancy detection system is shown in Fig. 1. The 

framework consists of three blocks, namely, a) an array of sensors, b) the prediction models, and c) the 

controller hardware. The input into the system comprises environmental parameters that jointly represent 

the occupancy status of the room. These parameters include the concentration of CO2 in the air, 

environmental temperature, and environmental humidity. It is important to highlight that the presence of a 

human in a room alters these environmental parameters, and if the pattern of this alteration is correctly 

explored, an accurate detection of human presence can be achieved. 
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Fig. 1. Framework diagram. 

The first block of Fig. 1 is where environmental parameters are sensed by a few environmental 

sensors such as CO2, temperature, and humidity sensors. The readings of the sensors are compiled into a 

data bank for processing. The readings are taken periodically from all the sensors and they are grouped to 

form an input vector. Each vector is annotated with the actual occupancy status of the room which falls into 

two categories, that is occupied (the events when a person was in the room) and not occupied (the events 

when nobody was in the room). The second block (prediction models) is where the measured data is 

processed to determine if the room is occupied or not. As mentioned in the introduction, different types of 

prediction models for occupancy exist, but the focus of this paper is on the ML models. Hence, the data is 

fed into ML algorithms to train ML models that could subsequently be used in occupancy prediction when 

unannotated new data are supplied to them. The third block is the controller hardware block which controls 

the operation of attached electrical appliances based on the input it receives from the prediction models 

block. 

3.1 Model formulation for sensor data 

Consider a vector of sensors S, written as in Equation 1, 

𝑆 = [𝑠1, 𝑠2, 𝑠3, ⋯ , 𝑠𝐼]                                                                                                            (1) 

that are used for environmental status measurements, for example, temperature, humidity level, CO2 level, 

etc. Let the measurement recorded by one sensor 𝑠 ∈ 𝑆 at instance k be denoted by 𝑚𝑖
𝑘 ∈ 𝑀𝑘and the total 

number of sensors, which is the cardinality of S be denoted by I. In addition, let the set of measurements 

recorded by one sensor 𝑠𝑖 for all the instances k be denoted by 𝑀𝑖. Then, the vector of measurement readings 

from all the sensors at one instance k is written as in Equation 2, and the vector of measurement readings 

from one sensor for all instances k is written as in Equation 3. 

𝑀𝑘 = [𝑚1
𝑘, 𝑚2

𝑘, 𝑚3
𝑘, ⋯ , 𝑚𝐼

𝑘],  𝑘 = 1,2, ⋯ , 𝐾                                                                        (2) 

 

       
ARRAY OF SENSOR READINGS 

d 

d 
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𝑀𝑖 = [𝑚𝑖
1, 𝑚𝑖

2, 𝑚𝑖
3, ⋯ , 𝑚𝑖

𝐾],   𝑖 = 1,2, ⋯ , 𝐼                                                                          (3) 

 

Also, the concatenation of the measurements read by all sensors for all time instances is given as M 

and is written as in Equation 4, where ‖ is a vector concatenation operation and 𝑀𝑘 ⊂ 𝑀. The task is to 

build a binary classifier that maps each 𝑀𝑘 to 𝑦𝑘 as shown in Equation 5, where 𝑦𝑘 ∈ {0,1} and 𝑦𝑘 is the 

occupancy status of an indoor environment at instance k. 

K

k

kMM

1=

=

                                                                                                                        (4) 

 

𝑐: 𝑀𝑘 → 𝑦𝑘                                                                                                   (5) 

3.2 Removal of outliers 

The presence of outliers in the measurement data introduces points of noisy large gradients which 

negatively affects the performance of some ML algorithms. There is, therefore, a need to remove them from 

the rest of the data. Let the mean of the measurement of a sensor 𝑠𝑖 taken over all the time instances be 

given as in Equation 6. 

𝜇𝑠𝑖
=

1

𝐾
∑ 𝑚𝑖

𝑘 ,      ∀𝑠𝑖𝜖𝑆𝐾
𝑘=1                                                                                                   (6) 

 

To eliminate outliers from the measurement data, a 99.7 percentile clipper is applied. The clipper 

discards all outliers, such that all values of measurements 𝑚𝑘
𝑖  from sensor 𝑠𝑖 are restricted to the range as 

shown in Equation 7, where 𝛿𝑠𝑖
 is the standard deviation of measurements read by sensor 𝑠𝑖 written as in 

Equation 8. 

𝜇𝑠𝑖
− 3𝛿𝑠𝑖

≤ 𝑚𝑖
𝑘 ≤ 𝜇𝑠𝑖

+ 3𝛿𝑠𝑖
     ∀𝑠𝑖 ∈ 𝑆, ∀𝑚𝑖

𝑘 ∈ 𝑀𝑘, 𝑘 = 1,2,3, ⋯ , 𝐾                                 (7) 

 

𝛿𝑠𝑖
= √

1

𝐾
∑ (𝑚𝑖

𝑘 − 𝜇𝑠𝑖
)𝐾

𝑘=1

2
,         

Ssi 
                                                                          (8) 

 

Algorithm 1 describes the 99.7 percentile clipper. 

 

Algorithm 1: The 99.7 percentile clipper algorithm 

Input: M which contains outliers 

Output: M that is void of outliers 

 Initialize: X = empty vector ϕ 

1:  for k = 1 to total number of instances K do 

2:   for i = 1 to total number of sensors I do 

3:    If (measurement 𝑚𝑖
𝑘< (mean 𝜇𝑠𝑖

− 3 × standard deviation 𝛿𝑠𝑖
)) then 

4:    update 𝑋 ← 𝑋‖𝑀𝑘; 

5:    else if (measurement 𝑚𝑖
𝑘 >  (mean 𝜇𝑠𝑖

+ 3 × standard deviation 𝛿𝑠𝑖
)) then 

6:     update 𝑋 ← 𝑋‖𝑀𝑘; 

7:    end if 

8:   end for 

9:  end for 

10: 𝑀 ← 𝑀\𝑋; 

11: return M 
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3.3 Feature selection 

In this study, a correlation threshold 𝜌th is applied to determine the features set that is used to train 

ML models. Let 𝜌𝑖,𝑗 denote the correlation between the measurement data read by two sensors 𝑠𝑖 , 𝑠𝑗 ∈ 𝑆 

which is computed as50: 

𝜌𝑖,𝑗 =
𝑲 ∑ 𝒎𝒊

𝒌𝒎𝒋
𝒌−(∑ 𝒎𝒊

𝒌𝑲
𝒌=𝟏 )(∑ 𝒎𝒋

𝒌𝑲
𝒌=𝟏 )𝑲

𝒌=𝟏

√[𝑲 ∑ (𝒎𝒊
𝒌)

𝟐
−𝑲

𝒌=𝟏 (∑ 𝒎𝒋
𝒌𝑲

𝒌=𝟏 )
𝟐

][𝑲 ∑ (𝒎𝒋
𝒌)

𝟐
−𝑲

𝒌=𝟏 (∑ 𝒎𝒊
𝒌𝑲

𝒌=𝟏 )
𝟐

]

                                  (9) 

 

If the value of 𝜌𝑖,𝑗 for any two features exceeds a threshold th , one of the features is removed from 

the features set while the other is retained. In this context, a feature implies the data read by a single sensor. 

Algorithm 2 shows how feature correlation is used to select features for ML model training. 

 

Algorithm 2: The feature selection algorithm 

Input: Features M and correlation threshold ρth 

Output: Features Fρ which contains only low-correlation features 

 Initialize: Fρ = empty vector ϕ 

1:  for i = 1 to total number of sensors I - 1 do 

2:  threshold exceeded = FALSE 

3:   for j = i + 1 to total number of sensors I    do 

4:   𝜌𝑖,𝑗 =
𝑲 ∑ 𝒎𝒊

𝒌𝒎𝒋
𝒌−(∑ 𝒎𝒊

𝒌𝑲
𝒌=𝟏 )(∑ 𝒎𝒋

𝒌𝑲
𝒌=𝟏 )𝑲

𝒌=𝟏

√[𝑲 ∑ (𝒎𝒊
𝒌)

𝟐
−𝑲

𝒌=𝟏 (∑ 𝒎𝒋
𝒌𝑲

𝒌=𝟏 )
𝟐

][𝑲 ∑ (𝒎𝒋
𝒌)

𝟐
−𝑲

𝒌=𝟏 (∑ 𝒎𝒊
𝒌𝑲

𝒌=𝟏 )
𝟐

]

 

5:    if correlation coefficient ρi,j> ρth then 

6:     threshold exceeded = TRUE 

7:    end if 

8:   end for 

9:  if threshold exceeded = FALSE    then 

10:  Fρ ← Fρ ‖𝑀𝑖 

11: end if 

12:   end for 

13:  return Fρ 

 

The initialization step of Algorithm 2 is used to create an empty vector Fρ which will eventually be 

populated with selected features to be used to train machine learning algorithms. Line 1 of the algorithm 

contains counter i that selects a feature while Line 3 contains another counter j that selects another feature. 

Line 2 contains a Boolean variable (threshold exceeded) which is used to determine whether a feature 

should be included among the features to be used for training a machine learning model or not. Line 4 

computes the Pearson correlation coefficient of the selected features which involves looping through all the 

K instances in each of the two selected features. The result of Line 4 is 𝜌𝑖,𝑗 which is the correlation between 

the two features which is compared with a threshold value ρth in Line 5. If the computed value of 𝜌𝑖,𝑗 is 

greater than the set threshold th , then the Boolean variable, threshold exceeded, is set to TRUE in Line 6. 

In Line 9, the Boolean variable threshold exceeded is examined, and if it is FALSE, then vector Mi, which 

contains all the instances of the ith feature is included in Fρ in Line 10, otherwise it is not included. This is 

repeated until the correlation between each feature and all other features has been computed and any time 

the correlation threshold is not exceeded, the content of Fρ is updated in Line 10. Finally, the selected 

features stored in vector Fρ are returned in Line 13. 

In this paper, we preempt a potential partial feature availability and develop a method to address it. 

Particularly, our approach is to ameliorate the detrimental impact of a potential partial availability of 
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features on the performance of a model. To achieve this, we consider that features that are strongly 

correlated with the target will have the most detrimental impact on model performance if they become 

unavailable. This is due to the behaviour of the machine learning optimization process which prioritizes 

features that are highly correlated with the target as stronger predictors51. This happens because features 

that are highly correlated with the target are relatively easier to learn for predicting the target51. Therefore, 

the proactive exclusion of features that are strongly correlated with the target from the features set would 

reduce the detrimental impact of the partial availability of features. Hence, Algorithm 2 considers the 

correlation between each feature and the target variable (ground truth) such that, if the correlation exceeds 

a threshold value, the feature is removed from the feature set. 

3.4 Partial feature availability-aware ML model selection 

Consider a set of ML models such as Logistic Regression (LR), Random Forest (RF), Decision Tree 

(DT), K-Nearest Neighbours (KNN), Support Vector Machines (SVM), and Gradient Boosting Machines 

(GBM) models; these models can be grouped into a row vector, Mod, having W elements as shown in 

Equation 10. 

Mod = [LR, RF, DT, KNN, SVM, GBM].                                                                         (10) 

 

For each of the models in the vector Mod, the corresponding performances in terms of accuracy, 

precision, recall, and F1-score52 are computed and combined to form vectors such as, [𝐴𝑐𝑐𝑤]𝑤=1
𝑊 , 

[𝑃𝑟𝑒𝑤]𝑤=1
𝑊 , [𝑅𝑒𝑐𝑤]𝑤=1

𝑊 , and[𝐹1𝑤]𝑤=1
𝑊 , respectively. Here, w = 1,2,3, …, W denote ML models LR, RF, 

DT, KNN, SVM, and GBM as indicated in Equation 10. For example, Acc1 is the accuracy of the LR model, 

Acc2 is the accuracy of the RF model, and so on. Likewise, Pre1 is the precision of the LR model, Pre2 is 

the precision of the RF model, and so on. As will be shown in Algorithm 3, the four performance model 

vectors [𝐴𝑐𝑐𝑤]𝑤=1
𝑊 , [𝑃𝑟𝑒𝑤]𝑤=1

𝑊 , [𝑅𝑒𝑐𝑤]𝑤=1
𝑊 , and [𝐹1𝑤]𝑤=1

𝑊 , are used to determine the elements of partial 

features availability candidacy binary vectors [𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Pre]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Rec]𝑤=1

𝑊 , and[𝑀𝑜𝑑𝑤
F1]𝑤=1

𝑊 , 

respectively depending on whether or not an ML model's performance reaches a minimum threshold. Let 

Pth denotes the minimum performance threshold required of each model for such model to be considered 

as a candidate partial-features-robust model. The candidacy of the model is determined using Equation 11 

to 14. Specifically, it is determined and binarised based on accuracy (Equation 11), precision (Equation 12), 

recall (Equation 13), and F1-score (Equation 14), where w = 1,2, …, W. 

𝑀𝑜𝑑w
Acc = {

1 if 𝐴𝑐𝑐𝑊 ≥ 𝑃th

0 otherwise     

                                                                                                (11) 

 

𝑀𝑜𝑑w
Pre = {

1 if 𝑃𝑟𝑒𝑊 ≥ 𝑃th

0 otherwise      

                                           (12) 

 

𝑀𝑜𝑑w
Rec = {

1 if 𝑅𝑒𝑐𝑊 ≥ 𝑃th

0 otherwise     

1 

0 
                                           (13) 

 

𝑀𝑜𝑑w
F1   = {

1 if 𝐹1𝑊 ≥ 𝑃th

0 otherwise    

                                                      (14) 

Let [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
 denotes a binary vector that indicates the partial features robustness status of 

each model; a model element with a value of "1" implies that the model is robust against partial feature 

availability problem, while a value of "0" implies otherwise. The partial features robustness of each model 

is determined as in Equation 15, where w = 1,2, …, W and notation “&” represents a bitwise AND operator. 
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𝑀𝑜𝑑𝑤
T_rob = {

1 if (𝑀𝑜𝑑w
Acc & 𝑀𝑜𝑑w

Pre & 𝑀𝑜𝑑w
Rec & 𝑀𝑜𝑑w

F1) = 1

0 otherwise                                                                   

             (15) 

 

Equation 15 implies that if a model has all its performance values exceeding or equal to a minimum 

threshold Pth, the model is considered robust against partial feature availability problems and vice versa. 

The procedure for determining the partial features robustness status of an ML model is shown in 

Algorithm 3. 

 

Algorithm 3: The partial feature availability-aware ML model selection algorithm 

Input: [𝐴𝑐𝑐𝑤]𝑤=1
𝑊 , [𝑃𝑟𝑒𝑤]𝑤=1

𝑊 , [𝑅𝑒𝑐𝑤]𝑤=1
𝑊 , [𝐹1𝑤]𝑤=1

𝑊  

Output: [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
 

Initialize: [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
= ∅, [𝑀𝑜𝑑𝑤

Acc]𝑤=1
𝑊 = ∅, [𝑀𝑜𝑑𝑤

Pre]𝑤=1
𝑊 = ∅, [𝑀𝑜𝑑𝑤

Rec]𝑤=1
𝑊 = ∅, 

                    [𝑀𝑜𝑑𝑤
F1]𝑤=1

𝑊 = ∅ 

Binarize model performance vectors: 

1:  for w = 1 to W do 

2:   If 𝐴𝑐𝑐w ≥ 𝑃th  then 

3:       𝑀𝑜𝑑𝑤
Acc = 1 

4:   else 

5:      𝑀𝑜𝑑𝑤
Acc = 0 

6:   end if 

7: 

8:   If 𝑃𝑟𝑒w ≥ 𝑃th  then 

9:       𝑀𝑜𝑑𝑤
Pre = 1 

10:   else 

11:       𝑀𝑜𝑑𝑤
Pre = 0 

12:   end if 

13: 

14:   If 𝑅𝑒𝑐w ≥ 𝑃th then 

15:       𝑀𝑜𝑑𝑤
Rec = 1 

16:   else 

17:       𝑀𝑜𝑑𝑤
Rec = 0 

18:   end if 

19:  

20:   If 𝐹1w ≥ 𝑃th  then 

21:       𝑀𝑜𝑑𝑤
F1 = 1 

22:   else 

23:       𝑀𝑜𝑑𝑤
F1 = 0 

24:   end if 

25:  

26: Determine the partial features robustness status: 

27:  for w = 1 to W do 

28:   if 𝑀𝑜𝑑𝑤
Acc = 1 then 

29:    if 𝑀𝑜𝑑𝑤
Pre = 1 then 

30:     if 𝑀𝑜𝑑𝑤
Rec = 1 then 

31:      if 𝑀𝑜𝑑𝑤
F1 = 1 then 

32:       𝑀𝑜𝑑𝑤
T_rob

 

33:      else  
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34:       𝑀𝑜𝑑𝑤
T_rob

= 0 

35:      end if 

36:     else  

37:     𝑀𝑜𝑑𝑤
T_rob

= 0 

38:     end if 

39:    else  

40:    𝑀𝑜𝑑𝑤
T_rob

= 0 

41:    end if 

42:   else  

43:   𝑀𝑜𝑑𝑤
T_rob

= 0 

44:   end if 

45:  end for 

46: return [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
 

 

4 PERFORMANCE EVALUATION 

An experiment was set up and a publicly available occupancy dataset53 was used. 

4.1 Data collection 

A publicly available occupancy dataset53 was used in this study. Temperature, humidity, light, 

humidity-ratio, and CO2 levels were measured in an office area with approximate dimensions of 

5.85 m × 3.50 m × 3.53 m (W × D × H)54. The data was collected using a microcontroller. A ZigBee radio 

was linked to it, and the data was sent to a recording station. A digital camera was used to assess whether 

or not the room was inhabited. Every minute, the camera time-stamped an image, which was then manually 

examined to categorize the data as occupied-room-status data or not-occupied-room-status data. Two of the 

datasets were obtained (datatraining.txt and datatest.txt)53 and merged so that the final dataset had 10,808 

entries. The dataset is unbalanced such that the “not-occupied” class constitutes the majority class. The 

stratified splitting method was used to divide the dataset into training and test sets in the proportions of 

80% and 20% respectively while retaining the original class distribution. This division was done in order 

to ensure that the test set is not seen by the ML model during training and validation phases so that the 

patterns in the test data are not learned by the model. The minority class of the training set was unsampled, 

and the training set was further split into training and validation sets in the proportions of 75% and 25%, 

respectively. Upsampling was done because most machine learning models are sensitive to class imbalance.  

4.2 Model training 

Six different classifiers were employed for performance evaluation. A range of supervised 

classification algorithms was considered which included the following: Logistic Regression (LR), Random 

Forest (RF), Decision Tree (DT), K-Nearest Neighbours (KNN), Support Vector Machines (SVM), and 

Gradient Boosting Machine (GBM). 

Logistic Regression 

Logistic regression55 is a statistical method for modelling binomial outcomes. The input may include 

one or more features (or variables) while the output of a binary logistic regression may be either 0 or 1, 

allowing for the binary classification of positive and negative classes. While it may not capture complex 

relationships as effectively as other models, its simplicity can yield strong baseline results, especially when 

the dataset is linearly separable. Some strengths of LR include: 

(i) Simplicity and Interpretability: Because logistic regression is a linear model, it is simple to 

apply, analyse, and comprehend how features relate to the target class. 
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(ii) Good for Linearly Separable Data: It is a powerful baseline model for classification issues and 

works well when the data is linearly separable. 

Decision Trees 

Decision Trees56,57 are intuitive models that split data based on feature values to make predictions. 

The leaf nodes of the tree are the set of classes being predicted. Their ease of visualization and interpretation 

can significantly facilitate the comprehension of patterns. Pruning approaches or their usage in ensemble 

methods like as RF may improve their performance, as they may suffer from overfitting when employed 

alone. Some strengths of DT include: 

(i) Interpretability: Decision trees give clear, visual decision rules that are simple to understand 

and explain. 

(ii) Handles Nonlinear Data: They do not need data transformation to represent complex 

relationships and feature interactions. 

Random Forest 

Random Forest56,57 is an ensemble learning method that builds multiple decision trees and merges 

them to improve accuracy and control overfitting. The idea behind RF is similar to asking several experts 

for their opinions and then using their votes to make a decision. RF is an example of ensemble ML, where 

individual ML models are first evaluated and then integrated into a single model that can often produce 

superior predictive performance than the individual models. 

(i) Handles Nonlinear Relationships: Random Forest works very well with a variety of datasets 

because it can capture complex, nonlinear relationships between features. 

(ii) Robustness and Overfitting Mitigation: It enhances model generalisation and lowers the 

danger of overfitting by averaging many decision trees. 

K-Nearest Neighbours 

Because KNN55,56 is a non-probabilistic and non-parametric model, it is the top option for 

classification studies with no previous knowledge of data distribution. The similarity measure (a distance 

metric) serves as the basis for classification. Any unknown sample is categorised using the majority vote 

of its k closest neighbours. The complexity of KNN grows as dimensionality increases, hence 

dimensionality reduction procedures are undertaken before utilizing KNN to reduce the impacts of the curse 

of dimensionality. 

(i) Non-parametric Nature: KNN can adapt to different datasets since it makes no assumptions 

about the underlying data distribution. 

(ii) Flexibility: It can directly handle multiclass classification and does well on smaller datasets 

with well-separated classes. 

Support Vector Machines 

The main goal of SVM55–57 classification technique is to create functions that locate the best 

hyperplanes to separate the various classes in training data. This method could be regarded as an 

'optimization' method, in which the greater margin between distinct classes in the training data yields the 

best hyperplanes. Since SVM may adopt generalisation qualities, overfitting is successfully prevented in 

the training phase.  

(i) Effective in High-Dimensional Spaces: SVM works well in high-dimensional spaces when 

there are many features relative to the number of samples. 

(ii) Kernel Trick for Nonlinear Data: By using kernel functions like the radial basis function 

(RBF), SVM is able to handle data that is nonlinearly separable. 
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Gradient Boosting Machines 

GBM is an ensemble technique that builds models sequentially, focusing on correcting errors made 

by previous models. This method generally provides superior predictive accuracy compared to simpler 

models due to its ability to capture complex relationships within data.  

(i) Handles Complex Data Well: GBM is able to capture complex patterns because it builds 

models iteratively, learning from past mistakes.  

(ii) Customizable and Versatile: It is versatile and customizable, allowing for the fine-tuning of 

parameters, such as the number of estimators and learning rate, to maximize performance for 

particular datasets. 

Each of the discussed ML algorithms has its own strength and uniqueness. They, therefore, make a 

good combination from which our proposed Algorithms 3 can select based on their performances in order 

to establish a robust ML model for partial feature availability scenarios. 

4.3 Simulation settings 

The correlation threshold between features was set to 0.8. If two features had correlation values of 

0.8 or above, one of them was removed from the feature set. The correlation threshold between features 

and the target variable was also set to 0.8. The partial features robustness threshold (Pth) was set to 90%. 

The experiment was conducted on a PC with a Core i3 processor running Windows 10 operating system 

and having 8 Gigabyte RAM. Python scripts were written to execute the 3 algorithms that were developed. 

The hyperparameters shown in Table 2 were selected for training the machine learning models and 

no attempt was made to optimize them. 

Table 2. Hyperparameters of machine learning models and their values 

Models Hyperparameters and values 

LR Optimization solver = ‘lbfgs’ Maximum number of 

iterations = 100 

  

RF N_estimators = 100 Split criteria = ‘gini’ Feature considered for 

splitting a node = ‘sqrt’ 

Use bootstrap = yes 

DT Split criteria = ‘gini’ Max_depth = grow 

until trees are pure 

Min_samples_split = 2 Min_samples_leaf = 1 

KNN Number of neighbors = 5 Weight of neighbors = 

‘uniform’ 

Leaf size = 30 Parameter = 

‘Euclidean distance’ 

SVM Kernel type = ‘rbf’ Gamma = ‘scale’ Tolerance for stopping 

criteria = 10-3 

 

GBM Number of estimators = 100 Learning rate = 0.1 Estimator max depth = 3 Min samples required 

to split a node = 2 

 

4.4 Experimental Results 

In this section, we first determine whether the ML models underfit or overfit the occupancy dataset. 

To do this, training subsets of increasing sizes were iteratively selected, and each model was trained on 

them. For each training size, the models' performance was assessed on both the training and validation sets 

by computing their respective accuracy scores. We plotted the training and validation accuracy over 

multiple epochs for all 6 ML models as illustrated in Figures 2(a) through (f). 
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(a)     (b)      (c) 

   
(d)     (e)      (f) 

Fig. 2 Learning curves which show the training and validation scores as a function of the number of training samples 
used in ML models which include: (a) Logistic regression, (b) Random Forest, (c) Decision tree, (d) K-nearest 
neighbours, (e) Support vector machine, and (f) Gradient boosting machine.  

In machine learning, if a model has low training and low validation accuracies (high bias), the model 

fails to capture the complexity of the data and therefore underfits it. Conversely, if a model has high training 

accuracy but low validation accuracy (high variance), the model memorizes the training data and overfits 

it, leading to poor generalisation. Figures 2(a) through (f) show that the training curves displayed high 

accuracy, indicating effective learning from the training data. The validation curves also reached a similarly 

high accuracy without showing a significant gap from the training curve. These alleviate concerns of 

underfitting and overfitting and affirm the high generalizability of our 6 trained ML models. 

In order to observe the impact of partial feature availability problems on the performance of the ML 

models, we present 3 groups of results for each category of experiment. The first group, labelled as 

"All features (validation)", are instances where correlation-based feature selection described in Algorithm 2 

was not performed on the validation experiment result. In this case, a high correlation may exist between a 

feature and the ground truth. The second group is similar to the first group except that the figures are 

labelled as "All features (test)", which denotes the results of the testing experiment. Hence, just like the 

first group, a high correlation between a feature and the ground truth may exist. Furthermore, the third 

group has the label "partial features" which represents instances where Algorithm 2 has been executed to 

filter off features that share a high correlation with the ground truth. Additionally, we present a set of 

results58 found in the literature that are labelled as “benchmark”. They are included to provide insight 

regarding the performance values of a published work that used similar models and the same dataset as 

ours. It should be noted that these benchmark results, which were obtained by Alam et al.58, have not 

considered potential partial feature availability problems and may likely perform poorly under this 

condition.  
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                                 (a) Benchmark58                                         (b) All features (validation) 

 

                             (c) All features (test)                               (d) Partial features 

Fig. 3 Accuracy of 6 classifiers: (a) result of benchmark algorithm which is susceptible to degradation by partial feature 
availability problem, (b) validation result of proposed algorithms which is susceptible to degradation by partial feature 
availability problem, (c) test result of proposed algorithm which is susceptible to degradation by partial feature 
availability problem (d) result of proposed algorithms with partial feature availability problem introduced. 

Fig. 3(a), 4(a), 5(a), and 6(a) are the accuracy, precision, recall, and F1-scores of the benchmark 

model. It can be observed that all benchmark results exceed 97.0% performance score which is impressive. 

However, if subjected to the partial feature availability problem, these performance values will likely drop 

significantly. Fig. 3(b), 3(c), and 3(d) show the accuracies of the proposed ML models. Specifically, 

Fig. 3(b) shows the accuracy results of the validation experiment, Fig. 3(c) shows the testing experiment 

accuracy results, and Fig. 3(d) shows the results where the partial feature availability problem has been 

considered. It can be observed in Fig. 3(b) and (c) that all the ML models yielded high accuracy 

performances when the partial feature availability issue was ignored. However, in Fig. 3(d), most of the 

accuracy values dropped when the partial feature availability issue was considered. Specifically, the SVM 

model in Fig. 3(d) had the highest drop in accuracy value, while the RF model had the lowest.  
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   (a) Benchmark58    (b) All features (validation) 

 
        (c) All features (test)                      (d) Partial features 

Fig. 4. Precision scores of 6 classifiers: (a) result of benchmark algorithm which is susceptible to degradation by partial 
feature availability problem, (b) validation result of proposed algorithms which is susceptible to degradation by partial 
feature availability problem, (c) test result of proposed algorithm which is susceptible to degradation by partial feature 
availability problem (d) result of proposed algorithms with partial feature availability problem introduced.  

Fig. 4(b) and (c) show the precision scores of the ML models when the partial feature availability 

issue was ignored while Fig. 4(d) shows the precision scores of the ML models when the partial feature 

availability issue was considered. It is evident in Fig. 4(b) and (c) that all models have high precision values 

exceeding 98%. However, most of the precision values dropped when the partial feature availability issue 

is considered in Fig. 4(d). In this figure, the RF model exhibited the least drop in precision value, while the 

LR, KNN, and the SVM models experienced more significant drops. 

Illustrated in Fig. 5(b) and (c) are the recall scores of the 6 ML models when the partial feature 

availability problem was ignored while Fig. 5(d) shows the recall scores of the ML models when the partial 

feature availability issue was considered. It can be observed in Fig. 5(b) and (c) that all models had high 

recall scores when the partial feature availability issue was ignored, but when it was considered in Fig. 5(d), 

the performances of some of the models depreciated significantly. For example, the recall scores of SVM 

and KNN dropped by about 20% each when compared to the results of the test experiment. The RF and DT 

models, on the other hand, experienced only a small decrease in their recall scores. 
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          (a) Benchmark58                           (b) All features (validation) 

 
       (c) All features (test)                 (d) Partial features 

Fig. 5. Recall scores of 6 classifiers: (a) result of benchmark algorithm which is susceptible to degradation by partial 
feature availability problem, (b) validation result of proposed algorithms which is susceptible to degradation by partial 
feature availability problem, (c) test result of proposed algorithm which is susceptible to degradation by partial feature 
availability problem (d) result of proposed algorithms with partial feature availability problem introduced.  

Fig. 6(b) and (c) show the F1-Scores of the 6 ML models when the partial feature availability issue 

was ignored while Fig. 6(d) shows the F1-Scores of the ML models when the partial feature availability 

issue was considered. It can be seen in Fig. 6(b) and (c) that all models have high F1-scores when the partial 

feature availability issues were ignored. However, with the partial feature availability problem considered 

(in Fig. 6(d)), some of them decreased in value. For example, compared to the test experiment in Fig. 6(c), 

the F1-score of KNN decreased from 97.5% to 82.5%, while that of LR decreased from 97.1% to 82.4%. 

Again, similar to the previous results, the F1-score of the RF and DT models were least affected by the 

partial feature availability problem. 
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(a) Benchmark58    (b) All features (validation) 

 
          (c) All features (test)              (d) Partial features 

Fig. 6. F1-scores of 6 classifiers: (a) result of benchmark algorithm which is susceptible to degradation by partial feature 
availability problem, (b) validation result of proposed algorithms which is susceptible to degradation by partial feature 
availability problem, (c) test result of proposed algorithm which is susceptible to degradation by partial feature 
availability problem (d) result of proposed algorithms with partial feature availability problem introduced.  

4.5 Discussion 

In the previous subsection, simulation results showed that when the partial feature availability 

problem was ignored, the performances of most of the ML models were satisfactory but plummeted when 

it was considered. However, not all models were seriously adversely impacted by the problem. To 

determine the robustness of the machine learning models against the partial feature availability problem, 

Algorithm 3 was applied. Recall that Algorithm 3 has two parts. The first part generated binary values for 

vectors [𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Pre]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Rec]𝑤=1

𝑊 , and [𝑀𝑜𝑑𝑤
F1]𝑤=1

𝑊  while the second part used a 

bitwise-AND operator to determine the partial-feature-robustness vector [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
. When 

Algorithm 3 was applied, the values of the binary vectors generated by the first part of the algorithm were: 
[𝑀𝑜𝑑𝑤

Acc]𝑤=1
𝑊 = 111101, [𝑀𝑜𝑑𝑤

Pre]𝑤=1
𝑊 = 011011, [𝑀𝑜𝑑𝑤

Rec]𝑤=1
𝑊 = 011000, and [𝑀𝑜𝑑𝑤

F1]𝑤=1
𝑊  = 011001. 

To explain these vectors, let us use [𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 = 111101 as an example. Observe that in the vector 

[𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊 , all the binary digits are "1" with the exception of the 5th digit which is a "0". If Fig. 3(d) is 

observed, it can be seen that the values of accuracies of the 6 ML models considered are LR = 91.44%, 

RF = 98.77%, DT = 98.2%, KNN = 91.06%, SVM = 89.92%, and GBM = 95.36%. In these accuracy 
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results, it can be seen that the accuracies of all models with the exception of the 5th model (SVM) exceeded 

Pth (where Pth = 90%). Based on the binarisation procedure of Algorithm 3, it implies that at w = 5, 

𝑀𝑜𝑑𝑤
Accis set to a value of "0" but set to a value of "1" in all other instances of w. This explains why 

[𝑀𝑜𝑑𝑤
Acc]𝑤=1

𝑊  has a value of 111101. The values of the other vectors [𝑀𝑜𝑑𝑤
Pre]𝑤=1

𝑊 , [𝑀𝑜𝑑𝑤
Rec]𝑤=1

𝑊 , and 

[𝑀𝑜𝑑𝑤
F1]𝑤=1

𝑊  are computed in a similar way. The final output of Algorithm 3, [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
, is determined 

based on the bitwise-AND operation shown in Table 3: 

 

Table 3. Illustration of the bitwise AND operation of Algorithm 3 

 w = 1 w = 2 w = 3 w = 4 w = 5 w = 6 

 LR RF DT KNN SVM GBM 

𝑀𝑜𝑑𝑤
Acc 1 1 1 1 0 1 

𝑀𝑜𝑑𝑤
Pre 0 1 1 0 1 1 

𝑀𝑜𝑑𝑤
Rec 0 1 1 0 0 0 

𝑀𝑜𝑑𝑤
F1 0 1 1 0 0 1 

Bitwise AND 

Operation 

(𝑀𝑜𝑑𝑤
T_rob

) 

0 1 1 0 0 0 

 

From the result shown in Table 3, it can be seen that the value of the partial features robustness 

vector is [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
= 011000. This implies that the RF and DT are robust against partial feature 

availability problems for the scenario considered. This is because they occupy the 2nd and 3rd-bit positions 

of [𝑀𝑜𝑑𝑤
T_rob

]
𝑤=1

𝑊
 vector which are the only bit positions having values of "1" in the vector. This is 

confirmed by Fig. 3 through 6 where it was observed that the RF and DT machine learning models 

outperformed all the other ML models considered based on the chosen performance metrics. Therefore, for 

the combination of sensors considered in this work, deploying indoor occupancy detection systems that are 

based on RF and DT models stands a high chance of success in real environments.  

5 CONCLUSION 

In this paper, data from environmental sensors was applied to machine learning-based classification 

models to predict the occupancy status of an enclosed space. Three algorithms were developed, namely 

outlier removal, feature selection, and partial-feature-aware ML model selection algorithms. The machine 

learning models considered in this study included Logistic Regression (LR), Random Forest (RF), Decision 

Tree (DT), K-Nearest Neighbours (KNN), Support Vector Machines (SVM), and Gradient Boosting 

Machines (GBM) models. These models were applied to publicly available data from environmental 

sensors such as temperature, humidity, carbon dioxide (CO2), and light sensors. It was observed that most 

of the ML models initially yielded high-performance results but were vulnerable to issues related to partial 

feature availability. However, further simulation experiments, which accounted for the partial feature 

availability issue considered, showed that only the RF and DT models were less affected by the partial 

feature availability problem and were therefore recommended for deployment in real environments using 

the combination of sensors considered in this study. Further experimental studies will be conducted as part 

of our future work. 
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