MECHANICAL PROPERTIES OF JUVENILE ACACIA MANGIUM

BY:

MOHD AMAR BIN MD ALIUDIN

MUHAMAD HAFIZ BIN MD SAAD

MUHAMAD BASRI BIN MD DAUD

DIPLOMA IN WOOD INDUSTRY
FACULTY OF APPLIED SCIENCES
UNIVERSITI TEKNOLOGI MARA

OCTOBER 2012

ACKNOWLEDGEMENT

Assalamualaikum w.b.t

Firstly, we are thankful to Almighty Allah for His merciful, compassionate and blessings given to

all of us.

We owe a special dedicated thanks to our supervisor, Miss Nur Hannani binti Abdul

Latif, for her constant supports, valuable inputs, guidance and encouragement over the duration

of our research. She is so generous in lending us helping hands and thanks again for her

kindness and guidance in completing this project successfully.

Million thanks also go to our Project Co-ordinator, Madam Siti Noorbaini bt Sarmin, for

the ideas and his guidance at every phase of this study.

Then, we would like to express our most sincere thanks to all staff at Wood Industry

Department, especially Mr Shahril, Mr Sardey and Mr Rudaini and others for their cooperation

and concerns.

Deepest appreciations also go to our beloved friends (part six June'12 – October'12)

for their support and friendship. Last and most importantly, we would like to offer our special

thanks to our beloved parents because with their pray, we lastly success this project. Finally, we

arrange to apologize if we had committed an offense to all parties whether involved or not

involved in the work of this project paper. If we have failed to mention someone, we sincerely

apologise.

Thank you...

i

LIST OF TABLES

TABLE		PAGE
Table 3.1:	The configuration of acacia samples for mechanical testing	8
Table 4.1:	The mechanical properties of Acacia mangium according to	
	the different portions and conditions.	16
Table 4.2:	Statistical analysis of F-Value on the bending and compression	
	properties of acacia at different portions and conditions	17
Table 4.3	Indicates the effect of portion on mechanical properties of	
	Acacia lumber	18

LIST OF FIGURES

FIGURE		PAGE
Figure 3.1:	Flowchart for preparation of raw material	8
Figure 3.2:	Wood sample for bending test	9
Figure 3.3:	Wood sample for compression test	9
Figure 3.4:	Method of testing	10
Figure 3.5:	Bending test process	11
Figure 3.6:	Compression test process	12
Figure 3.7:	The experimental design of acacia for mechanical testing	
	(bending and compression)	13
Figure 4.1:	Effect of samples condition on MOE values	19
Figure 4.2:	Effect of samples condition on MOR values	19
Figure 4.3:	Effect of samples condition on compression values	20

ABSTRACT

MECHANICAL PROPERTIES OF JUVENILE Acacia mangium

Juvenile Acacia mangium was used as raw material in this study. The objectives of this study were to determine the mechanical properties Acacia mangium at different portions (top, middle and bottom) and different conditions (green and dry). The moisture content (MC) of the green and dry samples was 74% and 12% respectively. Acacia mangium was dried by using kiln dry in achieving 12% MC. Bending and compression testing were applied to all samples. From this study, it showed that there is significant different on bending properties (MOE) only at different portions and bottom portion had the highest bending properties, followed by middle and top portions. Compression properties are not influenced by different portions of Acacia mangium. For condition (green and dry), both testing were highly influenced by the moisture content of the samples. Bending and compression properties of dry samples are higher than green samples. Drying process enhanced the mechanical properties of Acacia mangium. Acacia mangium is suitable to be used in producing furniture. A furniture manufacturer or sawyers that want to use Acacia mangium should be concern regarding on the portions and the importance of drying process.