PREPARATION AND CHARACTERIZATION OF CHITOSAN FROM RAZOR CLAM SHELL FOR ABSORPTION OF METHYLENE BLUE

NURSYAMIMI BINTI BUSU

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCE UNIVERSITI TEKNOLOGI MARA

FEBRUARY 2025

PREPARATION AND CHARACTERIZATION OF CHITOSAN FROM RAZOR CLAM SHELL FOR ABSORPTION OF METHYLENE BLUE

NURSYAMIMI BINTI BUSU

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

FEBRUARY 2025

This Final Year Project Report entitled "Preparation and Characterization of Chitosan from Razor Clam Shell for Absorption of Methylene Blue" was submitted by Nursyamimi Binti Busu in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

Dr. Jeyashelly A/P Andas Supervisor B. Sc. (Hons.) Applied Chemistry Universiti Teknologi MARA 02600 Arau Perlis

Dr. Zaidi Bin Ab Ghani
Co-supervisor
B. Sc. (Hons.) Applied Chemistry
Universiti Teknologi MARA
02600 Arau
Perlis

Dr. Siti Nurlia Binti Ali Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nalsulhah Binti Kasim Head of Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

February 2025

ABSTRACT

PREPARATION AND CHARACTERIZATION OF CHITOSAN FROM RAZOR CLAM SHELL FOR ABSORPTION OF METHYLENE BLUE

This research explores the extraction and characterization of chitosan from razor clam shells and its adsorption efficiency for methylene blue (MB) removal. The study addresses the limited availability of razor clams and investigates their potential as an alternative source of chitosan. Chitosan was successfully extracted through demineralization, deproteinization, and deacetylation, achieving a high degree of deacetylation (95.66%). Characterization using Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of amine (-NH2) and hydroxyl (-OH) functional groups, essential for adsorption. X-ray Diffraction (XRD) analysis indicated a low crystallinity structure, while Scanning Electron Microscopy (SEM) revealed a fine, fibrous surface morphology, which enhances adsorption properties. CHNS analysis confirmed the elemental composition, validating the purity of the extracted chitosan. Adsorption studies showed 86.8% MB dye removal within 60 min, influenced by hydrogen bonding and electrostatic interactions. The study concludes that razor clam shells are a sustainable and effective source of high-quality chitosan, offering significant potential for wastewater treatment applications.

TABLE OF CONTENTS

	PAGE
ABSTRACT	iii
ABSTRAK	iv
ACKNOWLEGDMENTS TABLE OF CONTENTS LIST OF TABLE	vi ·
	ix
	X
LIST OF FIGURES	xi :
LIST OF SYMBOLS LIST OF ABBREVIATIONS	xii
LIST OF ABBREVIATIONS	xiii
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problem Statement	4
1.3 Significance of study	5
1.4 Objectives	6
1.5 Scope and limitation of study	7
CHAPTER 2 LITERATURE REVIEW	
2.1 Chitosan	8
2.1.1 Chitosan from various sources	9
2.1 Razor clam	11
2.3 Research related to razor clams	13
2.4 Extraction of chitosan	13
2.4.1 Deproteinization	15
2.4.2 Demineralization	16
2.4.3 Deacetylation	17
2.5 Application of Chitosan	19
2.6 Adsorption efficiency of chitosan	20
2.6.1 Methylene Blue (MB)	22
CHAPTER 3 RESEARCH METHODOLOGY	
3.1 Raw materials	28
3.2 Analytical equipment	28
3.3 Extraction of chitosan	28
3.3.1 Preparation of the razor clam shell	28
3.3.2 Demineralization	29
3.3.3 Deproteination	29
3.3.4 Deacetylation	29
3.3.4.1 Percentage yield	29