SYNTHESIS OF ZnS/Ag₃PO₄ BASED PHOTOCATALYST USING IMPREGNATION METHOD FOR PHOTODEGRADATION OF RHODAMINE B

MUHAMMAD IRWANHADIDIE BIN ISMAIL

BACHELOR OF SCIENCE (Hons.) CHEMISTRY WITH MANAGEMENT FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

FEBRUARY 2025

This Final Year Project entitled "Synthesis Of ZnS/Ag₃PO₄ Based Photocatalyst Using Impregnation Method For Photodegradation Of Rhodamine B" was submitted by Muhammad Irwanhadidie bin Ismail in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry with Management in the Faculty of Applied Sciences, and was approved by

Dr. Mohammad Saifulddin Bin Mohd Azami Supervisor B. Sc. (Hons.) Chemistry with Management Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr Siti Nurlia binti Ali
Project Coordinator
B. Sc. (Hons.)
Chemistry with
Management
Faculty of Applied Science
Universiti Teknologi MARA
02600 Arau
Perlis

Dr. Nur Nasulhah binti Kasim Head Center of Studies B. Sc.(Hons.) Chemistry with Management Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis

Date:		

ABSTRACT

SYNTHESIS OF ZnS/Ag₃PO₄ BASED PHOTOCATALYST USING IMPREGNATION METHOD FOR PHOTODEGRADATION OF RHODAMINE B

The rapid industrialization has intensified the environmental burden of synthetic dye pollutants, particularly Rhodamine B (RhB), a common but hazardous dye used in various industries. This study addresses the photodegradation of RhB through the synthesis of a ZnS/Ag₃PO₄ composite photocatalyst via the impregnation method. The research emphasizes the unique coupling of zinc sulfide (ZnS), an n-type semiconductor with high reduction potential, and silver phosphate (Ag₃PO₄), a material with excellent visible-light absorption, to enhance photocatalytic efficiency. This research provides a promising pathway for developing costeffective, efficient, and sustainable photocatalysts for environmental remediation. The physical and chemical properties of ZnS loaded on Ag₃PO₄ were analyzed using FTIR, FESEM and UV-vis/DRS techniques. The performance on photodegradation of RhB were determine as followed: pure ZnS (69%), pure Ag₃PO₄ (81%), 5 ZAP (81%), 10 ZAP (94%), 15 ZAP (86%). 10 ZAP was denoted as highest performance compared to other photocatalysts due to well dispersed of ZnS on Ag₃PO₄ as well as lowest bandgap which enhance the photodegradation of RhB. Then, 10 ZAP was carried out for other parameters such as catalyst dosage, concentration of RhB and the effect of scavenger. The result shows the highest performance at concentration of RhB at 10 mg/L, catalyst dosage at 0.025 g L⁻¹ and the main species in this reaction was photogenerated hydroxyl radicals absorbed in the bulk solution (•OH_{bulk}) based on the scavenger study Overall, the ZnS on Ag₃PO₄ successfully contribute on photodegradation of RhB under visible light.

TABLE OF CONTENTS

		Page	
ABS	STRACT	i	
AB	ABSTRAK		
AC	KNOWLEDGEMENT	iii	
TA	BLE OF CONTENTS	iv	
LIS	ST OF FIGURES	vi	
LIS	ST OF TABLES	viii	
LIS	ST OF SYMBOLS	ix	
LIS	ST OF ABBREVIATIONS	X	
СН	APTER 1 INTRODUCTION		
1.1	Background of study	1	
1.2	Problem Statement	5	
1.3	Significance of study	7	
1.4	Objectives	8	
1.5	Scope and limitations of study	9	
СН	APTER 2 LITERATURE REVIEW		
2.1	Pollutants / Dyes Wastewater	11	
	2.1.1 Rhodamine B	17	
2.2	Conventional Treatment Method	19	
2.3	Advance Oxidation Process	23	
	2.3.1 Fenton Processes	25	
	2.3.2 Photo assisted Fenton Processes	25	
	2.3.3 Photocatalysis	25	
	2.3.4 Ozone Water System	26	
2.4	Photocatalysis as dye wastewater treatment	27	
2.5	Semiconductor	30	
2.6	Zinc Sulfide (ZnS)	31	
	2.6.1 ZnS composite	34	
2.7	Silver phosphate (Ag ₃ PO ₄)	35	
	2.7.1 Ag ₃ PO ₄ composite	37	
2.8	Mechanism of Photocatalyst	40	
	2.8.1 Type II Heterojunction	41	
	2.8.2 Z – Scheme heterojunction	44	
2.9	Impregnation method	47	
СН	APTER 3 METHODOLOGY		
3.1	Materials and chemicals	50	
3.2	Catalyst Preparation	51	
	3.2.1 Synthesis of Zinc Sulfide (ZnS)	51	

	3.2.2	Synthesis of Silver phosphate (Ag ₃ PO ₄)	51
	3.2.3	Synthesis of ZnS/ Ag ₃ PO ₄ Composite	52
3.3	Photo	degradation of Rhodamine B (RhB)	52
3.4	Parameter Study		
	3.4.1	Effect of catalyst loading	53
	3.4.2	Effect of dye concentration	54
		Effect of pH	54
3.5	Chara	acterization	54
	3.5.1	Field-emission scanning electron microscopy (FESEM)	54
		UV-Vis Diffused Reflectance spectra	55
	3.5.3	Fourier Transform Infrared (FTIR)	55
3.6	Expe	rimental design / Flow Chart	56
CHA	APTER	4 RESULTS AND DISCUSSION	
4.1	Introd	luction	57
4.2	Physiochemical Properties of Photocatalyst		57
	4.2.1	Fourier Transform Infrared (FTIR)	58
	4.2.2	Field Emission Scanning Electron Microscope (FESEM)	60
	4.2.3	Ultra-Violet Visible/Diffuse Reflectance Spectroscopy (UV-	61
	DRS)		
4.3		catalytic Activity of ZAP	63
4.4		neters affecting the photocatalytic degradation	65
		Effect of Dye Concentration	65
		Effect of catalyst dosage	67
		Effect of pH	69
		Effect of scavenger	71
4.5	Propo	sed mechanism of Photocatalytic Degradation	73
		5 CONCLUSION AND RECOMMENDATIONS	
5.1	Conc		74
5.2	Reco	mmendations	75
CIT	ED RE	FERENCES	77