THE FUNCTION OF CALCIUM CARBONATE IN ENHANCING STIFFNESS OF ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

MUHAMMAD IZZAT BIN AHAMAD HASIM

Final Year Project Report Submitted In
Partial Fulfilment of The of The Requirement for The
Degree Of Bachelor of Science (Hons.) Chemistry With Management
In The Faculty of Applied Science
Universiti Teknologi Mara

FEBRUARY 2025

THE FUNCTION OF CALCIUM CARBONATE IN ENHANCING STIFFNESS OF ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

MUHAMMAD IZZAT BIN AHAMAD HASIM

Final Year Project Report Submitted In
Partial Fulfilment of The of The Requirement for The
Degree Of Bachelor of Science (Hons.) Chemistry With Management
In The Faculty of Applied Science
Universiti Teknologi Mara

FEBRUARY 2025

This Final Year Project Report entitled "The Function Of Calcium Carbonate in Enhancing Stiffness of Ultra High Molecular Weight Polyethylene" was submitted by Muhammad Izzat Bin Ahamad Hasim in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Chemistry With Management, in the Faculty of Applied Sciences, and was approved by

Assoc. Prof. Dr. Razif Muhammed Nordin Supervisor B. Sc. (Hons.) Chemistry With Management Faculty of Applied Science Universiti Teknologi MARA (UiTM) 02600 Arau Perlis

TS. Muhammad Salihin Zakaria
Co-supervisor
Faculty of Chemical Engineering and
Technology
Universiti Malaysia Perlis (UniMAP)
02600 Arau
Perlis

Dr Siti Nurlia Ali
Project Coordinator
B. Sc. (Hons.) Chemistry With
Management
Faculty of Applied Science
Universiti Teknologi MARA (UiTM)
02600 Arau
Perlis

Dr Nur Nasulhah Kasim Head Center of Studies Faculty of Applied Science Universiti Teknologi MARA (UiTM) 02600 Arau Perlis

Date:

ABSTRACT

THE FUNCTION OF CALCIUM CARBONATE IN ENHANCING STIFFNESS OF ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

The aim of this study is to assess the impact of Calcium carbonate (CaCO₃) as a filler on the stiffness and mechanical strength of ultra-high molecular weight polyethylene (UHMWPE) which is a widely applied polymer with limitations with processing and resistance to creeping. Solid-state compression molding was used to prepare composites of varying CaCO₃ concentration (5, 10, and 20 php) which were then subjected to analysis for tensile strength, morphology, and chemical composition. FTIR analysis showed that CaCO3 was successfully incorporated, and the tensile tests showed a reduction in strength at lower filler concentrations which improved at higher loading. Morphology studies indicated that increasing filler CaCO3 concentration increased the distribution of the filler but also showed some problems of agglomeration at lower CaCO3 concentrations. These results show that when CaCO3 is evenly dispersed within UHMWPE, it does enhance the stiffness and properties of the polymer. This study shows the potential of CaCO3 as a low-cost filler in improving the performance of UHMWPE for industrial and biomedical applications. More optimization on the mixing method and actual testing will increase the quality and reliability of the material.

TABLE OF CONTENT

A DOTE A CIT	Page
ABSTRACT	1
ABSTRAK ACKNOWLEDGEMENT	11 :::
TABLE OF CONTENT	111 iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF SYMBOLS	viii
LIST OF ABBREVATIONS	ix
CHAPTER 1 INTRODUCTION	
1.1 Background of Study	1
1.2 Problem Statement	4
1.3 Significant of Study	5 7
1.4 Objectives	
1.5 Scope and Limitation of Study	7
CHAPTER 2 LITERATURE REVIEW	0
2.1 Introduction to Polyethylene	9
2.2 Derivative of Polyethylene	10 11
2.2.1 Low Density Polyethylene2.2.2 Linear Low-Density Polyethylene	13
2.2.3 High Density Polyethylene	17
2.2.4 Ultra-High Molecular Weight Polyethylene	18
2.2.4.1 Characteristic of Ultra-High Molecular Weight	20
Polyethylene	
2.2.4.2 Advantages of Ultra-High Molecular Weight	22
Polyethylene	
2.3 Polymer Processing	24
2.3.1 Melt Blending	25
2.3.2 Solid State Compression Molding	27
2.4 Filler	29
2.4.1 Calcium Carbonate (CaCO ₃)	30
CHAPTER 3 METHODOLOGY	
3.1 Materials	33
3.2 Polymer Mixing	33
3.2.1 Preparation of Polymer Composite	33
3.3 Analysis and Testing of Polymer Composite	34
3.3.1 Functional Group Analysis Using Fourier Transform Infrared	34
Spectroscopy 3.3.2 Morphology Analysis Using Digital Optical Microscope	35
3.3.3 Tensile Test Analysis	36