

Faculty of Applied Sciences Universiti Teknologi MARA

FACILE SYNTHESIS OF NiCo SUPPORTED SILICA RICE HUSK CATALYST

CHE ANISHA BINTI CHE RASIKIN

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry Applied In The Faculty of Applied Sciences Universiti Teknologi MARA This Final Year Project Report entitled "Facile Synthesis of NiCo Supported Silica Rice Husk Catalyst" was submitted by Che Anisha Binti Che Rasikin in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

> Dr. Jeyashelly Andas Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Nurlia Ali Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Dr. Nur Nasulhah Kasim Head Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

28TH JULY 2024

ABSTRACT

FACILE SYNTHESIS OF NiCo SUPPORTED SILICA RICE HUSK CATALYST

The research project aims to develop an environmentally friendly method for synthesizing NiCo using rice husk-derived silica. The research project aims to develop NiCo that can be prepared using the sol-gel method. However, the sol-gel method for producing NiCo catalysts faces challenges like agglomeration at high temperatures and limiting catalytic activity. Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM-EDX) will characterize the synthesized catalysts to determine composition, morphology, and structure. The shape of RH-NiCo particles showed that they did not stick together as much. FTIR showed how much SiO₂ was in RH-NiCo. It also showed that Ni-O and Co-O were stretching waves at a frequency of 665.01 cm⁻¹ in RH-NiCo. Furthermore, the weight values of Ni in RH-Ni and RH-NiCo were 1.25 wt% and 1.12 wt%, respectively. RH-Co had 0.17 wt% and RH-NiCo had 0.56 wt%. This shows that silica has an impact on the concentration of nickel and cobalt in RH-NiCo. However, silica generally helps NiCo grow, which is why the properties of RH-NiCo were successfully confirmed.

TABLE OF CONTENTS

		Р	Page
ABSTF ABSTF ACKN TABLF LIST C LIST C LIST C	RACT RAK OWLEDGEMENTS E OF CONTENTS OF TABLES OF FIGURES OF SYMBOLS	i ii ii	i
LISIC	JF ABBREVIATIONS	1	V
СНАР	FER 1: INTRODUCTION		
1.1	Background	1	
1.2	Problem Statement	4	
1.3	Research questions	5	
1.4	Objectives	5	
1.5	Significance of Study	6	
1.6	Expected Outcomes	7	,

CHAPTER 2: LITERATURE REVIEW

2.1	Rice Huks (RH)	8
	2.1.1 Silica	12
2.2	Nickel (Ni)	15
2.3	Cobalt (Co)	16
2.4	NiCo	17
2.5	Types of silica sources to synthesize NiCo	18
2.6	Method to Synthesize NiCo	20

CHAPTER 3: METHODOLOGY

3.1	Raw Materials	23
3.2	Chemicals	23
3.3	Methods	23
	3.3.1 Extraction of Silica From RH	24
	3.3.2 Preparation of RH-Silica	24
	3.3.3 Preparation of monometallic Ni	25
	3.3.4 Preparation of monometallic Co	26
	3.3.5 Preparation of bimetallic Ni and Co	26
3.4	Sample Characterization	26
	3.4.1 Fourier-Transform Infrared Spectroscopy (FTIR)	27
	3.4.2 Scanning Electron Microscopy and Energy Dispersive X-ray (SEM-EDX)	27
3.5	Experimental designs/ Flow chart of the methodology	28
3.6	Gantt Chart	29

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Appearance of SiO2, RH-Ni, RH-Co and RH-NiCo	30
4.2	Fourier-Transform Infrared Spectroscopy (FTIR) Analysis	31
4.3	Scanning Electron Microscope and Energy Dispersive X-ray (SEM-EDX) Analysis	34

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	46
5.2	Recommendations	47
~~~~~		
CITED REFERENCES		

## **CURRICULUM VITAE**