INTEGRITY AND INSULATION OF TIMBER STUD PARTITION WITH FIRE RETARDANT TREATMENT ON MERANTI SARANG PUNAI (Shorea parvifolia) PLYWOOD AS FACING MATERIAL

By

Mohd Izuddin Bin Mohamad

Final Project Paper Submitted to Partial Fulfilment for the Diploma in Wood Industries, Faculty of Applied Science, Universiti Teknologi MARA

April 2007

First and foremost, I would like to express my greatest gratitude to Allah S.W.T. for giving me the strength, courage and time without which this final thesis could not be completed.

Secondly, I would like to express my special thanks to all of my lecturers for the priceless knowledge that helps me in making this final thesis possible. To my lovely advisor, Puan Efi, your guidance and support had always keeps me in the right track. To my WTE 307's lecturer, Prof. Madya Dr. Jamaludin Bin Kasim for his best guidance during this thesis is being done.

I would also like to record my special appreciation to all staffs of Fire Protection Laboratory in FRIM, En Shahrul, En Suhaimi, Kak Yan En Rosidi and En Fuaz for their help hands during the lab test is being conduct. Especially to my advisor during my practical training, Encik Zaihan Jalaluddin, your generosity and hospitality shall not be forgotten.

TABLE OF CONTENT

TITLE

PAGE

PROJECT TITLE	i
APPROVAL SHEET	üi
DEDICATION	
ACKNOWLEDGEMENT	
LIST OF TABLE	
LIST OF FIGURE	x
LIST OF PLATE	
LIST OF ABBREVIATIONS	
ABSTRACT	10000000000
ABSTRAK	
	A 7

CHAPTER

1	INTRODUCTION	1
	1.1 General Background	1
	1.2 Justification and Problem Statement	2
	1.3 Objective	3
2	LITERATURE REVIEW	4
	2.1 Reaction to Fire	4
	2.1.1 Behavior of Timber in Fire	4
	2.1.2 Combustion of Wood	6
	2.1.3 Factor Influencing the Reaction to Fire	9
	2.2 Fire Resistance Criteria	11
	2.1.1 Designing the Fire Resistance	13
	2.2.2 Criteria	13
	2.3 Plywood	15
	2.3.1 Description of Plywood	16
	2.4 Species Used	20
	2.4.1 For Plywood	20
	2.4.2 For Stud	21
	2.5 Fire Retardant Chemical	22
	2.5.1 Monoammonium Phosphate	22
	2.5.2Diammonium Phosphate	24
	2.6 Mineral Wool / Rock Wool.	25
	2.7 Adhesives	26
	2./ Autostvos	20

3	MATERIALS AND METHOD	28
	3.1 Preparation for Sample Testing	28
	3.1.1 Treatment of the Plywood	28
	3.1.2 Preparation for the Sample	30
	3.2 Basic Density and Moisture Content Determination	35
	3.3 Fire Resistance Test	39
	3.3.1 Preparation for the Fire Resistance Test	42
	3.4 Flowchart for the Fire Resistance Test	54
4	RESULTS AND DISCUSSIONS	55
	4.1 Density and Moisture Content Determination	55
	4.2 Furnace Temperature	56
	4.3 Unexposed Face Temperature	59
	4.4 Observations	62
	4.4.1 Observation for DAP	63
	4.4.2 Observation for MAP	65
5	CONCLUSION AND RECOMMENDATION	67
	5.1 Conclusion	67
	5.2 Recommendation.	68

REFERENCES	xvi
APPENDICES	xviii
VITAE	xix

ų

INTEGRITY AND INSULATION OF TIMBER STUD PARTITION WITH FIRE RETARDANT TREATMENT ON MERANTI SARANG PUNAI (Shorea parvifolia) PLYWOOD AS FACING MATERIAL

By

MOHD IZUDDIN BIN MOHAMAD

April 2007

Abstract

Non-load bearing timber stud partition using treated MSP plywood as the facing material has been subjected to a test in accordance with BS 476: Part 20: 1987 to determine its fire resistance performance. This study explored how simultaneous treatment of Monoammonium phosphate (MAP) and Diammonium Phosphate (DAP) for plywood from Meranti Sarang Punai (*Shorea parvifolia*) influenced the properties such as fire resistant. The overall size of the treated MSP plywood partition was built within a masonry brick wall. Each treated MSP plywood panel of 900 mm high by 810 mm wide by 18 mm thick was fixed on both sides to a vertical Tembusu or Penaga timber stud of sectional size 810 mm and 795 mm high by 50 mm wide by 50 mm thick. The treated MSP plywood panel were predrilled and fixed to the frame with nominal nails at 300 mm centres to centres. The wall cavity between the boards was than filled with 50mm thick rockwool namely Fibertex of stated density 100 kg/m³. As result, MSP plywood treated with DAP shows failure in terms of Integrity during 109th minutes of period test.