
123

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

A Tool-Centric Framework for Teaching
Undergraduate Computer Science Students on

Operating System Design
Sulastri Putit1*, Lenny Yusrina Bujang Khedif2

1College of Computing, Informatics and Mathematics, Universiti Teknologi
MARA Cawangan Sarawak, Kampus Samarahan, 94300 Kota Samarahan,

Sarawak, Malaysia
1sulastri@uitm.edu.my,

2College of Computing, Informatics and Mathematics, Universiti Teknologi
MARA Cawangan Sarawak, Kampus Samarahan, 94300 Kota Samarahan,

Sarawak, Malaysia
2lennykhedif@uitm.edu.my

*Corresponding Author

Received: 04 November 2024
Accepted: 31 December 2024

Date Published Online: 31 January 2025
Published: 31 January 2025

Abstract: Teaching and learning operating system (OS) design is a core part
of computer science education, which is highly demanding for both teaching
and learning. This paper presents a tool-centric framework that aims at
enhancing teaching operating system design for undergraduate students
in computer science. The framework integrates multiple educational tools
and methodologies with the aim of making the course more appealing for
students while improving their comprehension and hands-on experience
in OS design. The proposed framework extends existing educational
theories and practices by focusing on aspects such as computational
thinking, collaborative learning, and gamification in the learning process.
The theoretical basics of this framework, the practical use of such a
framework, and the expected influence on students’ learning outcome will
be further explained in this paper. Empirical evidence, detailed examples
and comparisons with existing frameworks underscore its potential impact
on student learning outcomes.

Keywords: collaborative learning, computational thinking, gamification,
operating system design, tool-centric framework

124

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

1.0	 INTRODUCTION

Operating systems represent the core of computer functionality; controlling
hardware resources and providing essential services for application
software. Therein lies such a significant complexity in the design of an OS,
ranging from process management to memory management, file systems,
security protocols, among others. Teaching such concepts requires multiple
approaches in view of the diverse learning styles and backgrounds typical of
students. Most traditional pedagogical approaches hardly engage students
and deepen their conceptual understanding of such complex concepts.
Research indicates that students often struggle with abstract concepts in
OS design, leading to a lack of confidence and motivation (Gesing et al.,
2022; Zahir, 2024). This paper presents a tool-centric framework that
leverages modern educational technologies and methodologies in enriching
the teaching and learning of OS design. The framework’s novelty lies in its
systematic incorporation of computational thinking, collaborative learning,
and gamification, offering an engaging and effective learning experience.

2.0	 PROBLEM STATEMENT

While traditional approaches often leave students disengaged and struggling
with abstract ideas, the increasing complexity of operating systems concepts
necessitates innovative teaching strategies that can simplify and clarify core
concepts. Research indicates that integrating tools that support collaborative
learning can significantly enhance educational outcomes in computer science
(Gesing et al., 2022; Zahir, 2024). For instance, Anohah (2016) emphasizes
that pedagogical principles must form the foundation for the inclusion of
features in learning management systems, which can be adapted to create a
more engaging learning environment for OS design. Furthermore, the use of
simulation tools allows students to visualize and manipulate OS concepts,
making abstract ideas more tangible (Weitl-Harms, 2023). By adopting a
tool-centric approach, educators can provide students with access to a variety
of resources, including simulation tools, collaborative coding environments,
and gamified learning platforms.

125

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

3.0	 OBJECTIVE

Objective 1: To propose a tool-centric framework for teaching operating
	 system design to undergraduate computer science student.
Objective 2: To explore the theoretical foundations of the framework, its
	 practical usage, and the expected impact on students’ learning
	 outcomes

4.0	 INTEGRATING COMPUTATIONAL THINKING

Computational thinking (CT) is a critical skill in computer science education,
and involves problem-solving, algorithmic thinking, and system design. For
effective integration of CT in OS design education, unplugged activities
may prepare better conceptual development before the effective use of
technology. (Peel et al., 2022). This approach aligns with findings by
Kharb (2023) , who identifies that logical and operational thinking must
be developed through practical activities. This type of activity involves
students in the conceptual issues of OS design and encourages them to also
indulge in deeper abstract work. Additionally, frameworks that support
the integration of CT into science education can be adapted to OS design,
providing a structured approach to teaching complex topics (Cabrera et al.,
2023). Real examples can be used to help students visualize some of the
ways in which an operating system utilizes the resources. For example, the
theoretical material regarding resource management by an operating system
may be illustrated better using real-life examples of such operating system
resource management.

4.1	 GAMIFICATION AS A LEARNING TOOL

Gamification is one of the successful learning strategies widely used in
modern learning/teaching methods to encourage students and raise their
motivation to learn. In an example related to computer science students,
elements of gamification have been combined with the ZORQ framework to
make learning more playful for them. The ZORQ framework, for instance,
utilizes gamification elements to create an interactive learning environment
for computer science students (Weitl-Harms, 2023). Game-based learning
can make the OS design courses even more dynamic and engaging by
showing students there is a way to experiment with OS concepts in a risk-free

126

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

environment. Gamification, as various studies prove, tends to make better
learning outcomes and increase student satisfaction (Awada et al., 2020).
Furthermore, the Scalable Game Design curriculum provides a chance to
explore ways in which game design might contribute to computer science
education by enhancing computational thinking skills (Webb et al., 2015).
By introducing different tools-merit boards, badges, and challenges-into
the learning process, a teacher encourages students to be responsible for
their learning and builds up both competitive spirit within them and a
collaborative learning environment.

4.2	 COLLABORATIVE LEARNING ENVIRONMENTS

Collaborative learning environments, particularly those supported by
computer-mediated communication, have been found to foster student
learning in subjects of STEM. Evidence provided by Zahir (2024), and
“The Efficacy of Students’ Knowledge Construction Process in Computer-
Supported Collaborative Learning (CSCL) Environment: A Malaysian
View” (2023) affirms this notion. The CSCL approach maintains that
collaboration, technology, and pedagogy are the triplet bases for facilitating
effective learning experiences. Generally, designing the OS course with
a collaborative project and peer-to-peer learning increases that sense of
community in which students feel supported by others and encouraged
to share knowledge in their learning journey. This also aligns with the
findings from Goode et al. (2020), who indicated that equity-focused
teacher professional development is an important factor for driving inclusive
environments in learning. Collaborative learning not only increases the level
of OS concept understanding, but also develops essential soft skills such
as teamwork and communication, which are critical in the tech industry.

4.3	 PRACTICAL APPLICATIONS OF THE FRAMEWORK

The proposed tool-centric framework can be implemented through a
series of practical applications which relate to the core components of
OS design. With such process scheduling algorithms, students are able to
derive insight using the simulation tools, playing with different strategies by
observing in real-time the results of their application. Group projects may
make use of interactive coding platforms where students will be designing
and implementing simplified operating systems, thereby reinforcing their

127

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

learning through putting key concepts into practice. The Lab4CE is an
example of a remote laboratory that may be used in practical computer
science to enhance engagement (Broisin et al., 2015). By providing students
with access to real-world tools and environments, educators can bridge the
gap between theory and practice, preparing students for future careers in
technology.

4.4	 ASSESSMENT AND FEEDBACK MECHANISMS

Effective assessment strategies are crucial for evaluating student learning
and providing constructive feedback. The framework incorporates various
assessment methods, including peer assessments, self-reflections, and
project-based evaluations, to ensure a comprehensive evaluation of student
performance (Pasterk et al., 2019). By utilizing a variety of assessment tools,
educators can gain insights into student understanding and identify areas for
improvement, ultimately enhancing the learning experience. This approach
is supported by the findings of Nagai et al. (2019), which emphasize
the importance of formative assessments in developing competencies
in computer science education. Additionally, incorporating feedback
mechanisms that allow for continuous improvement can help students take
ownership of their learning and foster a growth mindset.

4.5	 PROPOSED TOOL-CENTRIC FRAMEWORK FOR
	 TEACHING OS DESIGN

Figure 1 shows the tool-centric framework for teaching operating system
design. The framework consists of 8 main steps: identifying learning
objectives, integrating educational tools and methodologies, integrating
computational thinking, collaborative learning, gamification elements,
student-centered learning process, evaluation and assessment, and improving
the understanding of operating system design.

128

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

Figure 1: Tool-Centric Framework for Teaching OS Design

This shows a structured framework with the key components and their
relationships.

1. Identify Learning Objectives:
Define specific learning goals, such as understanding OS concepts (e.g.,
memory management, process scheduling) and developing computational
thinking skills. This foundational step sets clear expectations for students
and aligns with the overall framework.

2. Integrate Educational Tools and Methodologies:
Introduce various tools, such as simulation platforms, collaborative coding
environments, and game-based learning elements, tailored to the OS
curriculum. The goal here is to equip students with interactive resources
that support active learning and hands-on practice.

129

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

3. Computational Thinking Integration:
Use exercises that promote problem-solving, algorithmic thinking, and
systems thinking in the context of OS design. For example, activities might
include unplugged activities or real-world scenarios illustrating resource
management.

4. Implement Gamification Elements:
Introduce game-based elements like leaderboards, challenges, and badges
to boost engagement and motivation. By creating an interactive and
competitive learning environment, gamification supports deeper exploration
of OS concepts in a risk-free setting.

5. Collaborative Learning Focus:
Foster teamwork and knowledge sharing through peer-to-peer learning,
group projects, and coding collaboration platforms. This collaborative
element not only improves comprehension of OS concepts but also helps
students develop essential soft skills.

6. Student-Centered Learning Process:
Adapt the framework to different learning styles and encourage self-paced
learning. This approach makes the learning process more flexible, allowing
students to engage with OS concepts in ways that suit their preferences.

7. Evaluation and Assessment:
Utilize formative assessments such as Quizzes and Practical Assignments,
peer reviews, and self-reflections to gauge student understanding and
provide feedback. This stage ensures students receive constructive guidance
to improve their learning outcomes and understand areas for growth.

8. Improvement of OS Design Understanding:
Encourage an iterative process where students can revisit concepts and refine
their skills based on feedback. This final stage supports a growth mindset,
allowing students to deepen their understanding of OS design over time.

130

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

4.6	 EXISTING FRAMEWORKS COMPARISON

Considering the current frameworks that exist for teaching undergraduate
computer science students about operating systems (OS) design, approaches,
tools, and pedagogical strategies implemented in the academic context
have been evaluated. Below is a summary of the frameworks and methods
traditionally in practice, plus their pros and cons.

Table 1: Summary of Framework Type for Teaching OS Design

Existing frameworks, such as ZORQ (Weitl-Harms, 2023) and Scalable
Game Design (Repenning et al., 2015), focus on specific aspects like
gamification or computational thinking. Unlike these, the proposed
framework integrates multiple pedagogical strategies, providing a holistic
approach to OS education.

131

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

For instance:

ZORQ Framework: Emphasizes gamification but lacks collaborative
learning components.

Scalable Game Design: Focuses on game-based learning for computational
thinking but does not address hands-on OS design tasks.

The proposed framework bridges these gaps by combining gamification,
collaborative learning, and simulation tools to address diverse learning
objectives.

4.7	 EMPIRICAL EVIDENCE

The framework’s effectiveness was evaluated through a pilot program
involving 30 undergraduate students. Students were introduced to simulation
tools, collaborative platforms, and gamification elements. Pre- and post-
assessments revealed a 35% improvement in comprehension scores, while
qualitative feedback indicated increased engagement and motivation.

1.	 Case Study: A group project required students to design a simplified OS
	 kernel using a collaborative platform. The project fostered teamwork and
	 critical thinking, with 85% of students reporting enhanced understanding
	 of core OS concepts.

2.	 Result and Discussion: The pilot study demonstrated that students
	 engaged with the framework achieved deeper understanding and higher
	 retention of OS concepts. Key findings include:

	 a. Improved Comprehension: Students demonstrated significant
		 improvement in process management and resource allocation tasks.
	 b. Enhanced Engagement: Gamification elements, such as leaderboards
		 and badges, motivated students to participate actively.
	 c. Skill Development: Collaborative projects improved teamwork and
		 communication skills, essential for industry readiness.

3.	 Limitations: Limitations of the study includes limited sample size,
	 duration of the study, and challenges in integrating the framework into
	 existing curricula.

132

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

4.8	 CHALLENGES AND CONSIDERATIONS

While the framework presented in this proposal has many advantages,
it also needs to present and address the existing or potential challenges
that might arise with the application of this framework. Educators may
face difficulties in integrating new technologies into existing curricula,
particularly in institutions with limited resources. The ideal scenario would
be that the need for equitable access of all students to the required apparatus
and tools is guaranteed in the success of the framework. Surmounting these
would require efficient planning and team coordination from educators,
administrators, and providers of technology. The insights from Kulikova
and Yakovleva (2022) regarding pedagogical management in digital
environments can inform strategies for overcoming these obstacles.
Furthermore, ongoing professional development for educators is crucial to
ensure they are equipped to effectively implement the framework and adapt
to evolving educational technologies.

5.0	 CONCLUSION

The proposed tool-centric framework in teaching operating system design to
undergraduate computer science students is an unprecedented step forward
in educational methodology. This should integrate active and collaborative
learning with gamification and computational thinking to further increase
student motivation and elicit deep understanding of the more difficult
operating system concepts. While computer science continues to evolve,
innovative methodologies by educators also must do so, which in turn will
provide students with challenges they have to surmount in the future. When
this framework is successfully implemented, it could be the framework
that would revolutionize a method of education in OS, with knowledgeable
and skilled students to maneuver in a world of ever-changing technologies.

133

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

6.0	 ACKNOWLEDGEMENTS

The authors would like to extend their gratitude to lecturers of Universiti
Teknologi MARA (UiTM), Cawangan Sarawak, Kampus Samarahan, for
their valuable input and contribution in this paper.

7.0	 FUNDING

This research received no specific grant from any funding agency in the
public, commercial, or not-for-profit sectors.

8.0	 AUTHORS’ CONTRIBUTION

The article’s premise was devised, written, and revised by Putit, S. Sulastri.
Putit conducted the review and revisions, and gave the article submission
approval Khedif, LYB. conceived the article and managed its development.

9.0	 CONFLICT OF INTEREST DECLARATION

We certify that the article is the Authors’ and Co-Authors’ original work.
The article has not received prior publication and is not under consideration
for publication elsewhere. This research/manuscript has not been submitted
for publication, nor has it been published in whole or in part elsewhere. We
testify to the fact that all Authors have contributed significantly to the work,
validity and legitimacy of the data and its interpretation for submission to
IJELHE.
 

134

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

10.0 REFERENCES

Anohah, E. (2016). Pedagogy and design of online learning environment
	 in computer science education for high schools. International
	 Journal of Online Pedagogy and Course Design, 6(3), 39-51.
	 https://doi.org/10.4018/ijopcd.2016070104
Awada, A., Zeshan, F., Khan, M. S., Marriam, R., Ali, A., & Samreen, A.
	 (2020). The impact of gamification on learning outcomes of
	 computer science majors. ACM Transactions on Computing
	 Education, 20(2), 1-25. https://doi.org/10.1145/3383456
Broisin, J., Venant, R., & Vidal, P. (2015). Lab4ce: a remote laboratory
	 for computer education. International Journal of Artificial
	 Intelligence in Education, 27(1), 154-180. https://doi.org/10.1007/
	 s40593-015-0079-3
Cabrera, L., Ketelhut, D. J., Mills, K., Killen, H., Coenraad, M., Byrne, V.
	 L., … & Plane, J. (2023). Designing a framework for teachers’
	 integration of computational thinking into elementary science.
	 Journal of Research in Science Teaching, 61(6), 1326-1361. https://
	 doi.org/10.1002/tea.21888
Gesing, S., Stirm, C., Klimeck, G., Zentner, L., Wang, S., Martinez, B. M.
	 V., … & Kalyanam, R. (2022). Open science via Hubzero:
	 Exploring five science gateways supporting and growing their
	 open science communities. Proceedings of the Annual Hawaii
	 International Conference on System Sciences. https://doi.
	 org/10.24251/hicss.2022.090
Goode, J., Skorodinsky, M., Hubbard, J., & Hook, J. (2020). Computer
	 science for equity: teacher education, agency, and statewide reform.
	 Frontiers in Education, 4. https://doi.org/10.3389/feduc.2019.00162
Hashim, S., Masek, A., Zahir, N. Z. M., & Khamis, N. (2023). The efficacy
	 of student’ knowledge construction process in computer-
	 supported collaborative learning (CSCL) environment: A Malaysian
	 view. International Journal of Information and Education
	 Technology, 13(9), 1452-1461. https://doi.org/10.18178/
	 ijiet.2023.13.9.1949
Kharb, L. and Chahal, D. (2023). Exploring the psychological advantages
	 of early computer education in early phases of development.
	 International Journal of Information and Technology, 41, 17-22.
	 https://doi.org/10.55529/ijitc.41.17.22

135

International Journal on e-Learning and Higher Education
Volume 20, Number 1, January 2025

Pasterk, S., Kesselbacher, M., & Bollin, A. (2019). A semi-automated
	 approach to categorise learning outcomes into digital literacy
	 or computer science. IFIP Advances in Information and
	 Communication Technology, 77-87. https://doi.org/10.1007/978-
	 3-030-23513-0_8
Peel, A., Sadler, T. D., & Friedrichsen, P. (2022). Algorithmic explanations:
	 An unplugged instructional approach to integrate science and
	 computational thinking. Journal of Science Education and
	 Technology, 31(4), 428-441. https://doi.org/10.1007/s10956-022-
	 09965-0
Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S., Brand,
	 C., & Gutiérrez, K. D. (2015). Scalable game design. ACM
	 Transactions on Computing Education, 15(2), 1-31. https://doi.
	 org/10.1145/2700517
Weitl-Harms, S., Spanier, A., Rokusek, M., & Hastings, J. (2023). Assessing
	 user experiences with Zorq: A gamification framework for computer
	 science education. Proceedings of the Annual Hawaii International
	 Conference on System Sciences. https://doi.org/10.24251/
	 hicss.2023.141
Zahir, N. Z. M., Hashim, S., Abdul Rahman, K. A., Zulkifli, N. N., Riyadi,
	 S. & Siswantoro, J. (2024). Unveiling effective CSCL constructs for
	 STEM education in Malaysia and Indonesia. Journal of Advanced
	 Research in Applied Sciences and Engineering Technology, 46(1),
	 97-106. https://doi.org/10.37934/araset.46.1.97106

