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 This study addresses the need for a quantitative assessment tool for 
spasticity, a common motor disorder in neurological conditions. The 
Simulated Spasticity Model (SSM) is developed to represent spasticity 
characteristics across different Modified Ashworth Scale (MAS) levels. 
This mathematical model captures the spasticity behaviour, offering 
detailed insights that qualitative descriptions cannot provide. Ethic 
approval was secured, and 114 data sets met the inclusion criteria. 
Research hypotheses, based on MAS descriptions, focused on muscle 
tone progression and catch positions during passive stretching. Data 
underwent segmentation, cleaning, and filtering, with feature extraction 
for crucial information. Slow passive stretch analysis revealed a 
quadratic characterizing range of motion (ROM) for Malaysians, 
exhibiting a high R2 result of 97.36%. The fast passive stretch analysis 
utilized the Bi-Gaussian Peak function, creating the SSM for simplified 
MAS interpretation. Validation showed a significant portion of data 
points falling within the 0.8 to 1.0 R2 range, confirming strong alignment 
with the model. Results robustly supported hypotheses, confirming the 
expected hierarchy of initial forces, catch positions, and graph widths. 
This research demonstrates that MAS can be effectively represented and 
understood using the SSM, bridging the qualitative-quantitative gap in 
spasticity assessment. In conclusion, this study transforms MAS into a 
data-driven tool, providing a valuable contribution to spasticity 
education. 
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INTRODUCTION 

Spasticity is a complex motor disorder characterized by increased muscle tone, involuntary contractions, 
and movement impairments commonly observed in individuals with neurological conditions such as stroke, 
multiple sclerosis, and cerebral palsy (Bhimani & Anderson, 2014; Rivelis et al., 2020). The Modified 
Ashworth Scale (MAS) is a widely used clinical assessment tool that categorizes spasticity severity into 
different levels based on the resistance to passive movement (Li et al., 2017; Charalambous, 2014). 
However, quantifying and constructing a simulated spasticity model that accurately represents each MAS 
level remains a challenge. This paper presents the development of a Simulated Spasticity Model (SSM) 
aimed at quantifying and classifying the MAS levels of upper limb spasticity.  

The objectives of this study are as follows: 

(i) Quantification of MAS levels: develop a systematic approach to quantify the severity levels 
of MAS based on specific criteria associated with each level. This involves considering factors 
such as muscle tone, resistance to passive movement, and range of motion limitations. 

(ii) Construction of the SSM: construct a comprehensive model that replicates the key 
characteristics and movement patterns associated with each MAS level. This includes factors 
such as muscle activation patterns, resistance profiles, and joint stiffness. 

(iii) Validation and Verification: validate the SSM by comparing its output with test data. This 
step ensures the accuracy and reliability of the model in representing real-world spasticity 
levels. 

Related works  

Conventional upper limb spasticity assessment, and subjective evaluations using the MAS is the 
common practice, leading to inconsistencies in assessments. A study by Puzi et al. (2019) addressed this 
issue by employing a data-driven approach to analyse torque and angle signals from arm muscles. By 
extracting relevant features, the research aims to identify independent features for classifying spasticity 
levels. Notably, the findings emphasize the potential of objective data-driven approaches in enhancing 
spasticity assessment in rehabilitation practices. AI-driven decision-making rule for the MAS in assessing 
elbow flexor spasticity (Park et al., 2021). Involving 28 raters, the AI demonstrates substantial agreement 
(82.2%) with human assessments. Biomechanical parameters, including catch angle and stretching speed, 
significantly influence AI decisions, highlighting potential advancements in objective spasticity 
evaluations. Previous research by Adeel et al. (2023) explored the relationship between spasticity, assessed 
with MAS, and the active range of motion in upper limbs among chronic stroke survivors. The findings 
highlight the significance of AROM as a complement to subjective MAS assessments. This suggests a 
potential gap in the existing literature concerning the quantification and objective classification of spasticity 
levels. Another study by Wang et al. (2023) introduced a novel system for quantifying upper-limb spasticity 
severity in post-stroke patients. Although this system provides valuable insights, there is still a need for 
comprehensive and standardized measures that can accurately capture the nuances of spasticity.  
Furthermore, a study by Salau & Jain, 2019 challenges the reliability of current clinical measures, such as 
MAS, in accurately assessing spasticity. It underscores the need for more clinically relevant definitions and 
reliable measurement tools. This gap suggests the potential for developing a robust and standardized tool, 
such as the SSM, which could offer a more comprehensive and quantifiable representation of spasticity. 
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MATERIAL AND METHODS  

Research hypothesis 

In this research study, MAS serves as the primary instrument for assessing the severity of spasticity. 
MAS plays a crucial role by providing a standardized means of quantifying muscle tone and catch behaviour 
in patients with spasticity (Medica et al., 2017). The research approach involves using different MAS levels 
as the foundation for categorizing and evaluating muscle tone and spastic catch behaviour. This approach 
aims to establish essential baseline parameters for the research hypothesis. The details of the hypotheses 
are described below. 

(i) Categorizing by MAS levels: all clinical data is categorized into different MAS levels, with 
each level indicating a distinct degree of muscle tone and spastic catch behaviour (Bohannon 
& Smith, 2014) . 

(ii) Measuring muscle tone: muscle tone refers to the baseline tension or resistance in a muscle 
when at rest (Ganguly et al., 2021). In individuals with spasticity, muscle tone can vary 
significantly. Therefore, the research focuses on muscle tone behaviour during passive stretch. 

(iii) Assessing catch behaviour: catch behaviour refers to involuntary muscle contractions or 
sudden increases in resistance to passive movement, often occurring in individuals with 
spasticity (Rosales et al., 2011). Instances of catch behaviour are carefully observed and 
recorded at each MAS level. 

(iv) Establish baseline parameters: by systematically measuring muscle tone and spastic catch 
behaviour at each MAS level, baseline parameters are established. These parameters allow for 
the characterization and differentiation of spasticity profiles and serve as the foundation for 
research hypothesis. 

These parameters in Error! Reference source not found. encompass the description of the MAS. MAS 
levels are classified based on the progression of muscle tone and the catch's position during passive 
stretching (Mohamad Hashim et al., 2022; Yee et al., 2021). This description is seamlessly integrated into 
the SSM and serves as a reference point for each MAS level, forming the foundation for our research 
hypotheses. Notably, MAS 0 is characterized by "no increase in muscle tone." Since our study specifically 
focuses on the measurement of muscle tone and catch behaviour, data from patients with MAS 0 were 
excluded due to non-alignment with the criteria. Additionally, for MAS 4, characterized by rigidity in either 
flexion or extension of the affected part(s), insufficient data was available to support further data processing. 
Consequently, our analysis concentrated exclusively on MAS 1, MAS 1+, MAS 2, and MAS 3. 

Table 1. Description of MAS level and hypotheses parameters 

MAS 
Point of reference 

Hypothesis 
Muscle tone behaviour Catch behaviour 

1 Slight increase in muscle tone Manifested by a catch and release 
or by minimal resistance 

Initial force, FS 
MAS 1 < MAS 1+ < MAS 2 < MAS 3 
Catch position θc 
MAS 1 and MAS 1+ > HROM 
MAS 2 and MAS 3 < HROM 
Width under the graph, 
For MAS 1 and MAS 1+ 
W1   > W2 
For MAS 2 and MAS 3 
W1   < W2 

1+ Slight increase in muscle tone 
Manifested by a catch, followed 
by minimal resistance throughout 
the remainder 

2 More marked increase in 
muscle tone Through most of the ROM 

3 Considerable increase in 
muscle tone Passive movement is difficult 
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Clinical data acquisition 

This research was carried out with the approval of the Research Ethics Committee at UiTM [Ref. 600-
RMI (5/1/6)] and the ethical amendment to use an updated device on 27 September 2019 (Othman et al., 
2015; Yee et al., 2023). All data collection took place at UiTM Sungai Buloh Health Centre, Hospital Al 
Sultan Abdullah, UiTM Puncak Alam, and Daehan Rehabilitation Centre, Putrajaya. However, there were 
certain limitations in the selection of participants, including: 

(i) Individuals must be Malaysian residents aged between 18 to 70 years. 

(ii) The existence of any pathology within the central nervous system. 

(iii) Patients needed to be responsive during the assessment. 

The physicians who participated in this study are both experienced clinicians and educators in the field 
of rehabilitation medicine. To get an interrater score, data is also collected by a physiotherapist (Othman et 
al., 2022) Before the data collection process, the patients and their caregivers received a comprehensive 
explanation of the entire procedure. Prior to commencing the data collection, informed consent and the 
respective signatures from the patients or their caregivers were obtained. 

The assessment comprised two phases: slow and fast passive stretches, each repeated three times by a 
different rater. Slow passive stretches aimed to determine the range of motion (ROM) of the examined joint. 
And fast passive stretches focused on identifying the catch and muscle tone behaviour. These angles and 
force measurements were recorded. During the clinical assessment, patients were positioned lying down 
with their arms alongside their bodies. As depicted in Fig. 1, the assessment is done from sROM (full 
flexion position) to eROM (full extension position). 

 

 

Fig. 1. Illustration of flexion-extension stretch during clinical assessment. 

In Fig. 2, the wireless data acquisition system utilized during the clinical assessment was provided by 
Biometrics Ltd. This system included a twin-axis electrogoniometer for angle measurement and a 
MyoMeter to quantify force and resistance during the clinical assessment. All these components were 
connected via wireless to DataLite PC software version 10.28, enabling the recording of data during the 
assessment. The wireless sensors collected signals and transmitted them to a data acquisition terminal, 
which was a local computer, using a dongle wireless transceiver. This computer was equipped with the 
DataLITE data acquisition software (ver. 10.28) from Biometrics Ltd. (Yee et al., 2023). All the signals 
were then forwarded to the DataLITE software for further analysis.  
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Fig. 2. The placement of Twin-axis Goniometer and Myometer during clinical assessment. 

Data pool  

A total of 76 patients with spasticity were recruited for the study, and the mean age was 49.27 years 
with a standard deviation of 18.81. Clinical data were collected by different raters (expert physicians and 
physiotherapists), resulting in a total of 114 datasets. The distribution of MAS ratings is detailed in Table 
2, The primary cause of spasticity was stroke, followed by cerebral palsy, meningitis, traumatic brain injury, 
spinal cord injury, Hypoxic-Ischemic Encephalopathy, and Parkinson's disease. Three (3) datasets were 
excluded from the analysis due to the non-responsiveness of patients during clinical assessments. 

Table 2. Distribution of MAS level from the clinical assessment 

MAS level 0 1 1+ 2 3 4 Total 
Trials 28 43 25 10 6 2 114 

Out of the 114 datasets, several criteria are excluded. These exclusion criteria were as follows: 

(i) Individuals with elbow joints or forearm pathology not related to neurological causes. 

(ii) Participants with elbow joint contractures caused by bone pathology. 

(iii) Patients are diagnosed with cerebral palsy (CP). This decision was informed by the 
observation that individuals with CP often demonstrate active stretching during the 
assessment, which makes it challenging to accurately define the force at the biceps. 

(iv) Participants who had undergone botulinum toxin treatment. 

(v) Data associated with MAS 0 and MAS 4, as previously detailed in the research hypothesis 
(Table 1). 

Every dataset is comprised of three sets of slow stretch data and three sets of fast stretch data, resulting 
in a total of 342 data for fast stretches and 342 for slow stretches. Following the exclusion criteria above, 
184 data are devoted to slow stretches and 184 data to fast stretches. The distribution across different MAS 
levels is visually presented in Table 3. 
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Table 3. Distribution of MAS level after applying the exclusion criteria 

MAS level 1 1+ 2 3 Total 
Fast stretch 87 66 27 6 186 
Slow stretch 87 66 27 6 186 

Data pre-processing 

The pre-processing procedure as in Fig. 3 commences with data segmentation, followed by data 
cleaning and filtering, and finally, feature extraction, resulting in the generation of the desired features.  

 

 

Fig. 3. Pre-processing procedure to convert raw data into desired features. 

Data segmentation 

During the data segmentation process, the data is selected and classified based on the MAS level, 
aligning with the rater classification. The data is divided into two distinct groups: i) slow stretch aimed at 
assessing the range of motion (ROM), while ii) fast stretch used to evaluate Initial force, catch position, 
and the area under the graph both before and after the catch has occurred. All the data is subdivided into 
two segments. 80% of the data is earmarked for analysis, while the remaining 20% is set aside for testing 
and evaluation purposes.  

Collected clinical data is obtained from DataLite PC software version 10.28. Data recorded from 
myometer is in Newtons (N), and the twin-axis goniometer provides data in degrees (°) for two axes (x-axis 
and y-axis) (Yee et al., 2023). To compute the elbow angle from the goniometer data, the angular 
measurements are treated as Cartesian coordinates. The resultant angle is calculated using the Pythagorean 
theorem:  

 
Elbow angle, θ  (°)  =  �(θx2 +  θy2) 

(1) 

 
This method is derived from the elbow angle by combining the contributions from both axes, 

facilitating further analysis.  

Data cleaning and filtering 

Upon consolidating all the data into each respective group, the next step in the process is data cleansing. 
This step is crucial because the data, being in the waveform, exhibits uneven sampling, and since all the 
sensors are wireless, the signal tends to be noisy. To extract the essential information required for signal 
evaluation, the locally weighted scatterplot smoothing (LOWESS) method is employed. LOWESS is a non-
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parametric regression technique (Fotiadis et al., 2016; Dias & Ronaldo, 2008). which involves an analytical 
approach aimed at generating a set of points along a curve. This process serves the purpose of eliminating 
noise from the raw clinical data. Subsequently, each graph is examined to discern the trends of each MAS 
level. 

A sample of raw clinical data is depicted in Fig. 4, sourced from patient 25, a male individual with 
post-ischemic stroke. The irregular distribution of data points emphasizes the superiority of the LOWESS 
approach in assessing the necessary and significant spasticity behaviour. 

 

 
(a)                 (b) 

Fig. 4. Sample (a) before and (b) after applying the LOWESS method of fast passive stretch. 

Feature extraction 

This process involves systematically identifying and distilling crucial information from clinical data, 
with a particular focus on shape features (Salau & Jain, 2019). These shape features encompass initial force, 
catch position, and the width under the graph before and after the catch, all of which play a vital role in 
characterizing spasticity behaviour. They offer a comprehensive view of muscle tone and resistance to 
passive movement which only occurs at fast stretches. That information contributes to understanding and 
quantifying spasticity.  

(i) Initial force (FS): This feature represents the force exerted at the onset of passive stretch, 
helping gauge initial force during movement, and providing insights into muscle tone. 

(ii) Catch position (θC): Catch position marks the point at which a rapid increase in muscle 
activation results in an abrupt stop or heightened resistance during a fast passive stretch. This 
parameter is vital for recognizing the catch phenomenon associated with spasticity. 

(iii) Width under the graph (W1 and W2): The width under the graph before and after the catch is 
an indicator of cumulative muscle activation and resistance exhibited by patients. It provides 
an integrated perspective on spasticity’s severity and characteristics, making it essential for 
differentiating between MAS levels. 

(iv) Height (H): Indicate the height of force captured during catch at θC from FS. 

To make sense of the data, a nonlinear curve fitting feature is used to consider every significant 
parameter. A Bi-gaussian function is employed to obtain peak modelling as in Fig. 5. The result is 
represented as the SSM, consisting of five parameters: initial force, catch position, height, and the width 

(N
)

(N
)
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under the graph before and after the catch. This alignment makes the Bi-Gaussian function an ideal 
morphological tracking algorithm for accurately capturing the curve of spasticity. 

 

 

Fig. 5. Sample curve and parameters involved. 

The feature extraction process aligns with several overarching research objectives: 

(i) Pattern recognition: By extracting shape features, the research aims to recognize distinct 
patterns in spasticity behaviour across different MAS levels. These patterns serve as the 
foundation for a quantitative model of spasticity. 

(ii) Visualization: The extracted features are visualized to enhance the comprehension of 
spasticity data's shape and structure. This aids in the interpretation and communication of 
findings. 

(iii) Improved model performance: The feature-extracted data optimizes the efficiency and 
effectiveness of data mining techniques, enhancing the performance of the simulated 
spasticity model. 

(iv) Interpretability: The features selected for extraction are chosen for their relevance and 
interpretability, ensuring that the model's results are meaningful and actionable in a clinical 
context. 

To obtain the range of motion, slow stretch data analysis is also essential. This analysis provides the 
range of motion and identifies where the initial force and catch position occur. The positions of these 
parameters are derived from slow stretch data, which is crucial for understanding the complete spasticity 
profile. 

 

RESULTS AND DISCUSSION 

Classification  

This research section explained the quantification and identification of distinct patterns associated with 
spasticity, with a specific focus on MAS 1, MAS 1+, MAS 2, and MAS 3. The classification procedure 
encompasses two primary phases. As shown in Error! Reference source not found., the first phase 
involves an analysis of slow stretch data, extracting essential parameters like Passive Range of Motion 
(pROM), start Range of Motion (sROM), half Range of Motion (hROM), and end Range of Motion 

Source : https://www.originlab.com/doc/Origin-Help/Bigaussian-PAFunc
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(eROM). Subsequently, the research shifts its attention towards identifying the core characteristics 
embedded within fast stretch data, aligning these attributes with MAS 1, MAS 1+, MAS 2, and MAS 3. 
This dynamic approach aims to provide a comprehensive comprehension of the intricate spasticity patterns 
as a strong foundation for effective classification and model development. 

 

 
Fig. 6. Classification procedure to obtain parameters and patterns for ROM and MAS level.  

A core component of pattern identification is feature averaging, a technique of significant value. This 
method entails calculating the average of multiple graphs to derive a representative parameter. The use of 
the averaging method is important because it helps mitigate the impact of outliers and variability inherent 
in individual measurements. By averaging multiple datasets, the resultant average graph smooths out 
anomalies and highlights the most consistent patterns, leading to more reliable findings. This is crucial for 
characterizing spasticity patterns and ensuring the robustness of the classification model.  

The analysis was conducted using OriginPro 2021, employing the feature averaging technique. The 
method selected for feature averaging was 'average,' with specific settings configured to optimize the 
process. The 'Average X value' was set as ‘Full X range’ with 1000 points, and linear interpolation was 
applied. This approach ensures a comprehensive and accurate representation of the patterns, making it a 
pivotal element in the classification process. 

After the classification phase, the next step involves regression analysis, with a particular focus on the 
simulated curve feature. The data obtained from feature averaging is refined by using a nonlinear curve 
fitting technique that considers all essential spasticity parameters. Then, the feature averaging profile is 
simulated by using suitable nonlinear curve fitting to construct the simulated model.  

To enhance the representational accuracy and power of the simulated model, an evaluation process is 
employed. This process involves testing the simulated model used for both slow and fast stretch analysis 
with a 20% test dataset that was separated during the initial data segmentation process. The evaluation 
results are quantified using R2 values, which serve as indicators of the similarity between the simulated 
model and the test data. 

Slow passive stretch analysis 
This section primarily focuses on determining parameters for: pROM, sROM, hROM, and eROM, 

derived from slow stretch data analysis. Descriptive statistics are applied to this dataset to establish a 
baseline understanding of the central tendencies and variability within the slow stretch dataset.  

Subsequently, as shown in Fig. 7, the analysis delves deeper into pattern identification through the 
feature averaging process. This phase allows us to uncover underlying patterns within the dataset. Once 
these patterns are identified, nonlinear curve fitting is employed. Specifically, a quadratic polynomial 
function is used for curve fitting. The decision to use a quadratic function to model human arm movement 
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is because the arm moves in one primary direction (flexion-extension movement). The result, with an R2 
value of 0.9966, indicates an excellent fit between the curve and the data. An R2 value approaching 1 reflects 
the model's strong capacity to explain the data's variability. Equation (2) characterizes a fitted curve, with 
a, b, and c representing coefficients that define the curve's shape. The result in Table 4 shows the mean and 
standard deviation (SD) of sROM, eROM, pROM, and hROM.  

 
 𝜃𝜃(𝑡𝑡) = 𝑎𝑎𝑡𝑡2 + 𝑏𝑏𝑡𝑡 + 𝑐𝑐 (2) 

  

 
(a)                                    (b) 

Fig. 7. (a) Feature averaging and (b) nonlinear curve fitting analysis on slow stretch data. 

Table 4. Mean and standard deviation for sROM, eROM, pROM, and hROM 

  sROM eROM pROM hROM 
Mean (degree) 3.86 123.72 120.19 58.58 
Standard deviation 3.52 8.57 8.28 5.08 

 
In the context of this research, the variables in the polynomial equation are defined as, 

(i) θ: represents the dependent measure, specifically, the pROM. It indicates the extent of joint 
movement in the spastic arm. 

(ii) t: an independent variable in our research is time, which serves as the observed parameter 
influencing the dependent variable (θ).  

The coefficients of a, b, and c are components of the polynomial equation, shaping the resulting curve 
to fit the data.  

(i) a, the coefficient of the quadratic term captures how time (t) has a squared or quadratic effect 
on pROM (θ). This term is responsible for introducing curvature to the curve, reflecting the 
complex relationship between time and pROM in the spastic arm.  

(ii) b, as the coefficient of the linear term represents how changes in time (t) linearly affect pROM 
(θ). This component indicates the influence of time on pROM in a straightforward, linear 
manner, and 

(iii) c, the interception signifies the value of pROM when time (t) is zero. Essentially, it provides 
the y-value where the curve meets the y-axis, offering a reference point for pROM. 
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The analysis demonstrates thoroughness, with a high R2 value indicating an effective curve fit to the 
data. However, it's crucial to assess whether the model aligns with theoretical expectations and clinical 
insights and to consider the practical significance. Testing the equation on the test dataset provides a 
valuable evaluation process. From the results, the R2 result of 97.36%, mostly falling within the 0.9 to 1 
range, shows the formula's excellent fit to the initial data. The remaining 2.63% of data, with R2 values 
between 0.8 and 0.9, still represent a strong fit, possibly due to unaccounted factors or data noise.  

Fast passive stretch analysis 
In this section, our focus centers on a comprehensive analysis of the MAS, with specific emphasis on 

MAS levels 1, 1+, 2, and 3. Our primary objective is to uncover and decipher the intricate muscle tone 
profile exhibited within these spasticity levels. After obtaining the profiles of MAS 1, 1+, 2, and 3 through 
a feature averaging procedure, a thorough inspection is pursued to verify that each profile adheres to the 
characteristics outlined by the MAS descriptions. 

 

 
(a)                                                             (b) 

 

 
     (c)                                                                               (d) 

Fig. 8. Feature averaging and linear fit (a) MAS 1, (b) MAS 1+, (c) MAS 2 and (d) MAS 3.  

The analysis of the force vs. angle graph for MAS 1 provides valuable insights into the specific 
characteristics of this level of spasticity. Fig. 8(a) shows that the observed slope for MAS 1 is 0.025 with 
R2 0.992 from 0.14° to 90.10° reflects a gradual increase in force with changing angles, indicating a slight 
augmentation in muscle tone as the range of motion progresses. This aligns with the description of MAS 1, 
where there is indeed a mild increase in muscle tone, yet it is not notably intense or rigid. Catch is 
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characterized by a brief resistance and is followed by a subsequent reduction in muscle tone, leading to 
minimal resistance towards the end of the range of motion. It is shown at the slope after the catch, which is 
-0.07 with R2 0.94, indicating a further reduction in muscle tone beyond the catch point. The negative force 
value signifies a decline in force compared to the previous angle, reinforcing the idea of release in muscle 
tone.  

For MAS 1+, the description of a "slight increase in muscle tone" is reflected in the data. Referring to 
Fig. 8(b), the catch, observed at 82.96° with a force of 2.59 N, corresponds to a point where muscle tone 
exhibits an abrupt but relatively mild increase, as indicated by a sudden elevation in force. This finding 
aligns with the description of MAS 1+, where a catch has occurred after hROM and higher muscle tone is 
identified. The slope of 0.02 and R2 0.991 from the start of the passive stretch indicates a gradual force 
increase over the range of motion. However, after the catch, the slope changes to -0.023 with R2 0.98, 
reflecting a reduction in muscle tone, consistent with the description of "minimal resistance" throughout 
less than half of the range of motion. This subtle reduction in muscle tone is consistent with the observation 
of a catch followed by minimal resistance, as described in MAS 1+. 

In the analysis of MAS 2, the description of a "more marked increase in muscle tone through most of 
the ROM" is clearly reflected in the data in Fig. 8(c). The initial force of 2.06 N and the subsequent increase 
to 4.69 N during the catch angle at 19.92° align with this description, indicating a substantial and noticeable 
increase in muscle tone. The relatively steep slope of 0.13 with R2 0.997 signifies a significant rise in force 
as the angle changes, supporting the concept of increased muscle tone in MAS 2. Post-catch, the graph 
transitions to a negative slope of -0.08, accompanied by an R2 value of 0.97. This decline signifies a 
reduction in muscle tone, reflecting the MAS 2 characteristic where specific muscle parts become more 
easily movable. Subsequently, an increasing pattern emerges with a slope of 1.99 and an R2 value of 0.96, 
signifying slight resistance in muscle tone towards the end of the range of motion. 

The MAS 3 spasticity profile aligns with the description of a marked increase in muscle tone, with the 
affected part still moveable. Commencing with the pattern of MAS 3 in Fig. 8(d), the high initial force is 
at 2.63 N, the graph demonstrates elevated muscle tone at sROM. The steep slope of 0.21 (R2 0.987) leading 
from 0° to 33.32°, accompanied by a force increase from 2.63 N to 6.21 N, signifies a rapid escalation in 
force. It illustrates a sudden increase in muscle tone at sROM. Following the catch, the force experiences a 
slight decrease to 4.49 N, depicted by a slope (-0.024, R2 0.93) and followed by an increasing slope (0.087, 
R2 0.75). Referring to the trend in both slopes, it is indicating a sustained higher resistance than MAS 2 
throughout the ROM. 

The research proceeds to simulate the MAS profile through the Simulate Curve feature by OriginPro 
2021. This simulation is built upon the foundation of the Bi-Gaussian Peak function, a mathematical model 
to replicate the spasticity profile. The choice of this function stems from its exceptional capacity to precisely 
capture the essential parameters, including initial force, catch position, and the width under the graph before 
and after the catch, all integral to the understanding of spasticity dynamics. Through the application of the 
Bi-Gaussian Peak function (Marcotte & David, 1985; Yu & Peng, 2010), the research generates an equation 
that captures the dynamics of spasticity, providing a quantitative representation. 

 
   𝐹𝐹 =  𝐹𝐹𝑆𝑆 + 𝐻𝐻𝑒𝑒−0.5(𝜃𝜃−𝜃𝜃𝐶𝐶𝑊𝑊1

)2     𝜃𝜃 <  𝜃𝜃𝐶𝐶 

𝐹𝐹 =  𝐹𝐹𝑆𝑆 + 𝐻𝐻𝑒𝑒−0.5(𝜃𝜃−𝜃𝜃𝐶𝐶𝑊𝑊2
)2     𝜃𝜃 ≥  𝜃𝜃𝐶𝐶  

(3) 

 
where Fs is the initial force, θc is the angle at catch, W1 is the width before catch, W2 is the width after catch, 
and H is height. 
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(a)                                                               (b) 

 

 
          (c)                                                                    (d) 

Fig. 9. Simulated Spasticity Model (SSM) fitted with Feature Averaging, (a) MAS 1, (b) MAS 1+, (c) MAS 2, and (d) 
MAS 3.  

Table 5. R2 value and parameters of Bi-Gaussian peak function  

 MAS 1 MAS 1+ MAS 2 MAS 3 
R2 0.99 0.99 0.96 0.92 

Parameters 
 Value SE Value SE Value SE Value SE 
Initial force, 𝑭𝑭𝑺𝑺 0.19 0.01 0.60 0.01 2.53 0.00 2.99 0.05 
Angle at catch, 𝜽𝜽𝒄𝒄 97.54 0.13 84.12 0.14 19.19 0.11 24.85 0.35 
Height, H 2.12 0.01 1.95 0.01 2.05 0.01 2.78 0.05 
Width before catch, 𝑾𝑾𝟏𝟏 39.70 0.30 47.33 0.35 6.85 0.10 8.73 0.40 
Width after catch, 𝑾𝑾𝟐𝟐 12.11 0.13 34.90 0.20 10.31 0.11 66.52 0.96 
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These simulated curves are created using the Bi-Gaussian Peak function as in Equation (3), each 
representing a distinct MAS level as shown in Fig. 9, and the specific parameters are detailed in 

 
(b)                                                               (b) 

 

 
          (c)                                                                    (d) 

Fig. 9. Simulated Spasticity Model (SSM) fitted with Feature Averaging, (a) MAS 1, (b) MAS 1+, (c) MAS 2, and (d) 
MAS 3.  

Table 5. When comparing the results of ULSTraD's R2 values for MAS 1, 1+, 2, and 3 (0.99, 0.99, 0.96, 
and 0.92, respectively) with other research in Table 6, ULSTraD shows a remarkable level of accuracy and 
consistency. For example, Zhang et al. (2019) reported an R2 value of 0.93 using linear regression, which 
is similar to ULSTraD's performance. Other studies, like Yee et al. (2023) and J. Park et al. (2021), reported 
accuracy and correlation coefficients that indicate strong but slightly lower levels of correlation (91% 
accuracy and 0.825, respectively). This comparison highlights ULSTraD's superior ability to simulate 
spasticity, as it achieves a higher degree of fidelity in its spasticity representation compared to these 
previous models.  

Table 6. Result from another related research 

Study Model type R2  value 
Yee et al., 2023 Not specified Accuracy and F1: 91% 
J. Park et al., 2021 AI model Correlation coefficient: 0.825 
Zhang et al., 2019 Linear regression 0.93 
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Puzi et al., 2019 SVM, LDA, KNN 84%, 80%, 76% 
Pandyan et al., 2001 Non-linear curve 0.844 

 
The evaluation process effectively validates the SSM generated through the Simulate Curve feature 

and the Bi-Gaussian Peak function, particularly for MAS 1, MAS 1+, MAS 2, and MAS 3. Hence, Fig 10 
visually represents the feature averaging and the SSM for each MAS level. 

 

 
Fig. 10 Simulated Spasticity Model (SSM) 

 

CONCLUSION 

The primary objective of this research is to transition the Modified Ashworth Scale (MAS) from a 
qualitative assessment tool for spasticity to a quantitative and data-driven assessment. Currently, in 
rehabilitation centres, hospitals, and medical schools, MAS is widely employed to assess spasticity, but its 
application is primarily qualitative, lacking numerical values and specific parameters. This study aims to 
bridge this gap by introducing a quantitative framework to evaluate and understand spasticity. In the context 
of slow stretch analysis, quadratic function withstands out as a valuable tool for interpreting the range of 
motion (ROM) in the human arm. Given that the data was collected in Malaysia, the results provide specific 
insights into the ROM characteristics of the Malaysian demographic. The findings also serve as a reference 
point, offering limits for the start range of motion (sROM), half range of motion (hROM), end range of 
motion (eROM), and passive range of motion (pROM). These quantifiable parameters can significantly 
enhance the understanding of spasticity, especially in the context of human arm movement. Additionally, 
the results provide valuable data on the positioning of the "catch" phenomenon during fast extension, the 
critical aspect of spasticity assessment. In fast stretch analysis, the datasets gathered from clinical 
assessments have proven to be robust and suitable for the analysis. Table 7 shows analysis results affirm 
the satisfaction of the hypotheses.  

Table 7. Hypothesis and analysis result 

Hypothesis Result 
Initial force, FS 
MAS 1 < MAS 1+ < MAS 2 < MAS 3 
 

Initial force, FS 
MAS 1 = 0.19 N, MAS 1+ = 0.60 N, 
MAS 2 = 2.53 N, MAS 3 = 2.99 N 
MAS 1 < MAS 1+ < MAS 2 < MAS 3 
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Catch position θc 
MAS 1 and MAS 1+ > hROM 
MAS 2 and MAS 3 < hROM 

Catch position θc 
hROM = 58.58° 
MAS 1  = 97.54°, MAS 1+ = 84.12° 
MAS 1 and MAS 1+ > hROM 
MAS 2 = 19.19°, MAS 3 = 24.85° 
MAS 2 and MAS 3 < hROM 

Width under the graph, 
For MAS 1 and MAS 1+ 
W1   >  W2  
For MAS 2 and MAS 3 
W1   <  W2  

Width under the graph, 
MAS 1 ; W1  = 39.70, W2 = 12.11 
MAS 1+ ; W1  = 47.33, W2 = 34.90  
MAS 1 and MAS 1+ : W1   >  W2 
MAS 2 ; W1  = 6.85, W2 = 10.31 
MAS 3 ; W1  = 8.73, W2 = 66.52 
For MAS 2 and MAS 3: W1   <  W2 

 
The research strongly suggests that spasticity can be effectively represented and understood using the 

Bi-Gaussian Peak function. The Simulated Spasticity Model (SSM) emerges as an essential tool, making 
the interpretation of spasticity more comprehensible. It simplifies the understanding of all the parameters 
outlined in the MAS descriptions, allowing for easy interpretation from the graphical representations. 

In conclusion, this research successfully bridges the qualitative-quantitative divide in spasticity 
assessment by transforming the MAS into a data-driven tool. The SSM can serve as a baseline for recreating 
spasticity behaviour using a high-fidelity upper limb spasticity simulator. The goal is to improve the 
teaching and learning process for clinical trainees. By providing a detailed and data-driven representation 
of spasticity, the SSM enhances the educational tools available for understanding and managing spasticity 
in clinical settings. Recommendations include expanding datasets for further exploration of MAS levels 
and ensuring a comprehensive understanding of spasticity. This research pioneers a transformative 
approach, enhancing spasticity assessment for both clinical and educational purposes. 
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