Properties of Particleboard From Juvenile Akasia (*Acacia mangium*) at 550 Kg/m³ and 650 Kg/m³ with 8% resin

By FATMAWATI BINTI ABDUL AZIZ

Final project submitted in partial fulfillment for the
Diploma in Wood Industry
Faculty of Applied Science
Universiti Teknologi MARA
Pahang

OCTOBER 2004

ACNOWLEDGEMENT

First of all, I would like to thank almighty ALLAH for his blessing leading to be success of this final project. I would like also to thank very much to my advisor Mr. Ahmad Fauzi Bin Othman for helps me for finish my final project and to check my thesis, and all kindness you've showed.

Deepest appreciation is also extended to my Course Tutor, Mr. Wan Mohd Nazri B. Wan Abdul Rahman for assisting and his commitment during the implementation of this final project. Not for got to my lecture in Wood Industry because helping me went I was in problem.

Thank you to the staff of Diploma Wood Industries Workshop, Mr. Sardey and En. Annuar for helping me. I would like to offer my special thanks to staff Forest Research Institute Malaysia (FRIM), Mr. Saimin and Mr. Jalali for helping and give me information during the particleboard making in FRIM workshop. Also thanks to my friend because give me a support to do this final project and encouragement towards the completion this study. Finally to my beloved family who give me strength to keep up with the study and encourage me all the process of succeeding this project paper. Also thanks to other individuals who have involved directly or indirectly with this project paper especially T5A Nov. 2004.

Thank you very much.

TABLE OF CONTENT

		Pages
APPROVAL	SHEET	i
DEDICATION		
	EDGEMENT	ii iii
LIST OF TABLE		IV
LIST OF FIG	GURE	V
LIST OF PL	ATE	Vi
LIST OF GR	APH	Vii
LIST OF AB	BREVIATION	Viii
ABSTRACT		ix
ABSTRAK		X
CHAPTER I		
CHAITERI		
1.0 INTRODUCTION		1
1.1 Objective		4
3		
CHAPTER I	ī	
	•	
2.0 LITERATURE REVIEW		5
2.1 General Description		5
2.2 Ecology		6
2.3 Uses		7
2.4 Propagation Technology and Nursery Techniques		8
2.5 Chemistry		10
2.6 Toxicity		10
2.7 Germplasm		10
	istribution	11
2.9 Cultivation		11
2.10		12
2.11	Yields and Economics	12
2.12	Energy	12
2.13	Biotic Factors	13

	ciebbaiu	14
2.15 Defin	nition composite	16
2.16 Meth	ods and Proposed Approach	17
2.17 Rece	nt Progress	18
2.18 Antic	ipated significance	19
	lard Particleboard	19
	Particleboard	20
	mine Particleboard	21
	ral Particleboard Information	21
CHAPTER III		
3.0 MATERIAL AN	ID METHODS	24
3.1 Material		
3.2 Methodology		
3.2.1	Preparation of raw material	26
	3.2.1.1 Chipping	26
	3.2.1.2 Flaking	28
	3.2.1.3 Screening	30
	3.2.1.4 Drying	31
3.3 Board Fa	31	
	Blending	31
3.3.2		32
3.3.3		34
3.3.4		35
3.3.5		36
3.3.6	0	37
3.4 Testing	Carring for results process	37
3.4.1	Bending Testing (MOE and MOR)	38
3.4.2		39
3.4.3		40
5.4.5	Water Absorption testing	-10
	Trace Ausorphon testing	

14

2.14

Particleboard

Properties of particleboard From Juvenile Akasia (*Acacia mangium*) At 550 Kg/m³ and 650 Kg/m³ with 8% resin

By

FATMAWATI BINTI ABDUL AZIZ

ABSTRACT

In this study, two type of density that is 550 Kg/m³ and 650 Kg/m³ will be used *Acacia mangium* wood particles with 8% resin. This type of density will be made into board that, that is particleboard after been cured by heat and pressure. Several types of test will determine the properties of this board. The result shows that higher density will give better properties in most of the test expect Thickness swelling.