THE EFFECT OF PALM OIL MILL EFFLUENT (POME) APPLICATION ON THE POPULATION OF SOIL MICROBIAL

AZIELIA ELASTIQAH SALAMTH

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences University Technology MARA

TABLE OF CONTENTS

			PAGE	
ACI	KNOWL	EDGEMENTS	i	
TAI	TABLE OF CONTENTS			
LIS	LIST OF TABLES LIST OF FIGURES			
LIS				
LIS	T OF AI	BBREVIATIONS	vii	
ABS	ABSTRACT			
ABS	STRAK		X	
CH	APTER	1: INTRODUCTION		
1.1	Backgr	round Study	1	
1.2		n Statement	2	
1.3	Signific	cance of the Study	2 3	
1.4	Objecti	ives of the Study	3	
CH		2: LITERATURE REVIEW		
2.1		ficrobial Functions and Benefits	4	
2.2		ative for Soil Sustainability	5	
2.3		of Soil Microbial on Plant Productivity	8	
2.4	Activi	ty That Diminishing Soil Microbial Population	10	
СН	APTER	3: METHODOLOGY		
3.1		Materials		
5.1	3.1.1	Raw Materials	11	
	3.1.2	Chemicals	11	
	3.1.3	Apparatus	11	
3.2	Methods		**	
5.2	3.2.1	Samples Collection	11	
	3.2.2	Microbial Isolation	12	
	3.2.3	Soil microbial identification	13	
	3.2.4	Soil pH reading	13	
3.3		cal Analysis	14	
СН	APTER	4: RESULTS AND DISCUSSION		
4.1	Total	bacteria population	16	
4.2	Total	fungi population	19	
4.3		oH reading	23	
4.4		most enhanced soil microbial due to POME application	25	
СН	APTER	5: CONCLUSIONS AND RECOMMENDATIONS	30	
CITED REFERENCES				
API	APPENDICES			

LIST OF TABLES

TABLE	TITLE	PAGE
4.1	Total bacteria count at different POME concentrations	16
4.2	Total fungi count at different POME concentrations	20
4.3	Soil pH reading	23
4.4.1	The increment percentage of bacterial population	25
4.4.2	The increment percentage of fungi population	26
4.1.1	Normality test for bacterial population data	34
4.1.2	ANOVA for the effect of POME application on	
	bacteria population	34
4.1.3	LSD for the effect of POME application on bacteria	
	Population	35
4.2.1	Normality test for fungi population data	35
4.2.2	ANOVA for the effect of POME application on	
	fungi population	36
4.2.3	LSD for the effect of POME application on fungi	
	Population	36

LIST OF FIGURES

FIGURE	TITLE	PAGE
4.1	Gram negative bacteria	38
4.2	Aspergillus sp. culture	39
4.2.1	Aspergillus sp. under microscope view	39
4.3	· Penicillium sp. culture	40
4.3.1	Penicillium sp. under microscope view	40
4.4	Trichoderma sp. culture	41
4.4.1	Trichoderma sp. under microscope view	41

ABSTRACT

THE EFFECT OF PALM OIL MILL EFFLUENT (POME) APPLICATION ON THE POPULATION OF SOIL MICROBIAL

POME is produced everyday in large quantity but its usage as organic matter or bio-fertilizer is still under utilized. There is lack of study that investigate the correlation between POME application and the population of soil microbial especially in Malaysia and also the information whether POME holds the potential as bio-fertilizer. The purposed of this study is to estimate the population of soil microbial due to POME application and to quantify which types of the soil microbe are mostly enhanced by POME application. The soil was applied with 0, 10, 50 and 90 ml of POME per 200g soil. The total bacteria and fungi counts of the soil samples were estimated by using pour plate technique. The data showed an increased in bacteria population counted with an increased of the POME concentrations. The fungi population is fluctuated with the increased in the application of POME concentration. The mostly enhanced soil microbe is bacteria where the highest increment percentage is 44.1% increased from the control in the soil that treated with 90ml POME. Meanwhile the highest increment percentage for fungi is 19.3% from the control in the soil treated with 50ml of POME. It could be proposed that POME application indirectly help to enhance the plant growth by encourage the richness of bacterial such as gram negative bacteria which could help in plant development. POME application also suitable to sustain the fertility of soil since certain fungi that contributed on the plant development could survive the chemical substance contain in POME.