ENZYMATIC EXTRACTION OF HYDROLYZED GELATIN FROM Nemipterus japonicas (ikan kerisik) WASTE

MAROMMIE ROLAND MECILUS

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCE UNIVERSITI TEKNOLOGI MARA

JANUARY 2018

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	i
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
ABSTRACT	viii
ABSTRAK	ix
CHAPTER 1 INTRODUCTION	
1.1 Background study	1

1.1	Dackground study	
1.2	Problem statement	6
1.3	Significance of study	8
1.4	Objectives of study	9

CHAPTER 2 LITERATURE REVIEW

2.1	Gelatin	1	10
	2.1.1	Gelatin structure	11
2.2	Fish ge	elatin	13
2.3	Functio	onal and physical properties of gelatine	14
	2.3.1	Gelatin mechanism	14
	2.3.2	Gel strength	15
	2.3.3	Solubilty of gelatine	15
	2.3.4	Vicosity of gelatine	16
	2.3.5	Melting point of gelatine	16
	2.3.6	Setting point of gelatin	17
2.4	Substra	ate pretreatment	17
	2.4.1	Enzyme pretreatment	18
2.5	Industr	ry application of gelatin	22
	2.5.1	Food industry uses	22
	2.5.2	Pharmaceutical uses	23
	253	Photographic uses	23

CHAPTER 3 METHODOLOGY

3.1	Materials	25
3.2	Sample preparation	25
3.3	Research design	26
3.4	Alkaline pretreatment	28
3.5	Acid pretreatment	29
3.6	Gelatin hydrolyzed production	29

3.7	Physic	ochemistry Analysis	30
	3.7.1	The percentage of gelatine hydrolyzed gelatine	30
	3.7.2	Moisture content	31
	3.7.3	Protein content	31
	3.7.4	pH value	32
	3.7.5	Color test	32

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Proximate composition of kerisi fish skin	34
4.2	Extraction gelatine from kerisi fish skin	38
4.3	Extraction of hydrolyzed gelatine from kerisi fish skin	46
4.4	Physiochemical test of hydrolyzed gelatine of kerisi fish	48

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	52
CITED REFERENCES	54
APPENDICES	
CURICULUM VITAE	

ABSTRACT

ENZYMATIC EXTRACTION OF HYDROLYZED GELATIN

FROM Nemipterus japonicas (IKAN KERISIK) WASTE

Enzymatic play an important role as to speed up the reaction for particular substances, and in this research the proteolytic enzymes were applied to extract the gelatin to become hydrolyzed gelatin. This research was used Nemipterus japonicas or locally known as "ikan kerisik" waste which is consisting of skin and bone was been exctacted to obtain the gelatin production. Two different enzymes which are alcalase and papain enzyme were used to extract the hydrolyzed gelatin and also combination of both enzymes was used in this study. The aim is to compose and identify optimum enzyme to produce highest yield and best quality of hydrolyzed gelatin. Meanwhile, in order to measure the amount of the production yield, the wet weight percentage and dry weight percentage together with the protein result percentage was been determined to calculate the highest vielding of hydrolyzed gelatin. Moreover, the quality of the hydrolyzed gelatin has determined due to its physiochemsitry which was devided into pH value, protein content and also the moisture content. Based on this study, combination of alcalase and papain enzymes had shown the highest yield and the best quality of gelatin then followed by alcalase enzyme and lastly the papain enzyme. The quality of the gelatin actually is still lack of information and it is recommended for the future study to include several indicators in proving the quality of the gelatin such as the anti-oxidant and the ability of water holding.

CHAPTER 1

INRTRODUCTION

1.1 Background of Study

Gelatin also known as gelatus is a stiff, frozen, translucent, colorless, brittle in dry form, flavorless in food is derived from collagen that obtained from various types of raw animal materials. Gelatin is an irreversibly hydrolyzed form collagen where the hydrolyzed will be reduce the protein fibrils into smaller peptides which will have broad molecular weight ranges associated with the physical and chemical due to the method of denaturation hydrolysis. Gelatin hydrolyses have potential in various aspect either in anti-oxidant activity, hypertension disable, anti-microbe and also usage in food industry act as ingredients in food formulation (Limpisophon *et al.*, 2014). Commonly, gelatin is used as a gelling agent either in food, pharmaceutical drugs, photography, or cosmetic manufacturing. It can be found mostly in gummy candy as well as the other product such as marshmallow, gelatin desserts and also in ice cream, dips and yogurts (Kodjo *et. al.*, 2010)