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FOREWORD 

 

 

Welcome to the 10
th

 volume and 1
st
 issue of the ESTEEM Academic Journal (EAJ), an online 

peer-refereed academic journal of engineering, science and technology.Since the beginning of 

this year, a number of articles have been sent to us; some of which still being under review in 

their first or second phase, and the first eight of them are being published now, others 

following in the subsequent issue. Article submissions came from different UiTM branch 

campuses across the country and the manuscripts covered a wide range of engineering, 

science and technology topics, all of them being interesting and innovative. 

 

First and foremost, we would like to extend our sincere appreciation and utmost gratitude to 

Associate Professor Dr. Ngah Ramzi Hamzah, Rector of UiTM (Pulau Pinang), Dr.  Mohd 

Mahadzir Mohammud@Mahmood, Deputy Rector of Academic Affairs and Dr. Mohd Subri 

Tahir, Deputy Rector of Research, Industry, Community & Alumni Network for their 

generous support towards the successful publication of this issue. Not to be forgotten also are 

the constructive and invaluable comments given by the eminent panels of external reviewers 

and language editors who have worked assiduously towards ensuring that all the articles 

published in this issue are of the highest quality. In addition, we would like to thank the 

authors who have submitted articles to EAJ, trusting Editor and Editorial Board and thus 

endorsing a new initiative and an innovative academic organ and, in doing so, encouraging 

many more authors to submit their manuscripts as well, knowing that they and their work will 

be in good hands and that their findings will be published on a short-term basis. Last but not 

least, a special acknowledgement is dedicated to those members of the Editorial Board who 

have contributed to the making of this issue and whose work has increased the quality of 

articles even more. Although there will always be cases in which manuscripts will be rejected, 

our work so far has shown that the board members' motivation has been, and will be, to make 

publications possible rather than to block them. By means of intensive communication with 

authors, academic quality is and will be guaranteed and promising research findings are and 

will be conveyed to the academia in a functional manner. 

 

Dr. Chang Siu Hua 

Chief Editor 

ESTEEM Academic Journal 

Vol. 10, No. 1 (2014) 

(Engineering, Science & Technology) 
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ABSTRACT 

This study considers an analysis using a Poisson regression model where the 

response outcome is a count, with large outcomes being rare events. Estimates 

of the parameters are obtained by using the maximum likelihood estimates. 

Inferences about the regression parameters are based on Wald test and 

likelihood ratio test. In the model building process, the stepwise selection 

method were used to determine important predictor variables, diagnostic tools 

were used in detecting multicollinearity, non-constant variance, outliers, and 

also analysis of residual were used to measure the goodness fit of the model. 

Applications of these methods are illustrated by employing a study from 

LaVange, Keyes, Koch, and Margolis (1994) where a case study of lower 

respiratory illness data in infants which took repeated observations of infants 

over one year. Six explanatory variables involve the number of weeks during 

that year for which the child is considered to be at risk, crowded conditions 

occur in the household, family’s socioeconomic status, race, passive smoking, 

and age group. We found that the explanatory variables which contribute 

significantly are passive smoking and crowding. Social economic status and 

race do not appear to be influential, and neither does age group.The value of 

R
2
 is 0.0562 which indicate that about 5.62% from the total variation can be 

explained by the Poisson regression model. This number does not give a better 

result since the variance is non-constant. It simply means the existence of 

overdispersion. 

Keywords: Poisson distribution; Poisson Regression Model; Nonlinear Model; Model 

Building. 

1. INTRODUCTION    

Poisson regression became popularized as an analysis method in the 1970s and 1980s 

(research done by Frome, Kutner, and Beauchamp (1973), and Charnes, Frome, and Yu 

(1976)). Later in the 1990s, Poisson’s regression modeling technique was widely used in a 

homicide incidence study (Cyrus & Guohua, 1999), a study of injuries incurred by electrical 

mailto:suryaefiza016@ppinang.uitm.edu.my
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utility workers (Loomis, Dufort, Kleckner, & Savitz, 1999), and an evaluation of the risk of 

endometrial cancer as related to occupational physical activity (Moradi et al., 1998). 

Currently, the applications of Poisson regression models are widely used in various fields 

such as biomedicine (Waltoft, 2009), accident analysis and prevention (El-Basyouny & 

Sayed, 2009), insurance (Morata, 2009), biostatistics and epidemiology (Shults Sun, Tu, & 

Amsterdam, 2005), environmental sciences (Agarwal, Gelfand, & Citron-Pousty, 2002), 

criminology (Osgood, 2000) and agriculture (Hall, 2000). 

Poisson regression model is one of the nonlinear regression models where the response 

outcomes are discrete; therefore all the theories including the model development, model 

building, diagnostics and inferences that have been used in the analysis of Poisson regression 

model are carried out in a similar fashion as for the nonlinear regression models (Neter, 

Kutner, Nachtsheim, & Wasserman, 2003). Estimation of the parameters of a nonlinear 

regression model is usually carried out by the method of least squares or the method of 

maximum likelihood (Spiegelman & Hertzkmark, 2005; Linda & Julio, 2001). Unlike in 

linear regression, it is usually not possible to find analytical expressions for the least squares 

and maximum likelihood estimators for nonlinear model regression models. Inferences about 

the regression parameters in nonlinear regression are usually based on large-sample theory. 

This theory states that the least squares or maximum likelihood estimators for nonlinear 

regression models with normal error terms, when the sample size is large, are approximately 

evenly distributed and almost unbiased, and have almost minimum variance (Neter et al., 

2003). In Poisson regression model, a large-sample test of a single regression parameter can 

be constructed by using Wald test (Yang, Hardin, & Addy, 2009). Forseveral regression 

parameters, a large-sample test can be constructed by using likelihood ratio test (Hardin, 

Yang, Addy, & Vuong, 2007). 

The model building process of the regression model considers the selection of variables, 

diagnostic tools and remedial measures. The automatic selection procedures that have been 

used are stepwise method and all-possible-regressions method (Kleinbaum, Lawrence, 

Kupper, Muller, & AzharNizam, 1998). However, stepwise selection procedures are 

frequently occupied in Poisson regression model (Neter et al., 2003). The model building 

process for nonlinear regression models often differs somewhat from the linear regression 

models. The reason is that the functional form of many nonlinear models is less suitable for 

adding or deleting predictor variables and interaction effects in the direct fashion that is 

feasible for linear regression models. The use of diagnostic tools to examine the 

appropriateness of a fitted model plays an important role in the process of building a nonlinear 

regression model. Plots of residuals can be helpful in diagnosing departures from the assumed 

model. Two goodness fit tests that can be determined are the Pearson chi-square (Neter et al., 

2003) and the deviance (Wang, Kalwani, & Akcura, 2007). If unequal error variances are 

present, weighted least squares can be used in fitting the nonlinear regression model (Bender 

& Heinemann, 1995). Alternatively, transformations of the response variable that may 

stabilize the variance of the error terms and also permit use of a regression model can be 

investigated (Neter et al., 2003). Multicollinearity can be verified by using the collinear 

quantity and condition index that can be obtained from the eigen system (Lazaridis, 2007). 

Plots of deviance residuals can help to identify the outliers indicated in the model (Shrestha, 

2007). 
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The Poisson regression model is one of the nonlinear regression models where the response 

outcomes are discrete (Frome et al., 1973). Therefore all the theories including the model 

development, model building, diagnostics and inferences that have been used in the analysis 

of Poisson regression model are carried out in a similar fashion as for the nonlinear regression 

models so that the accurate explanation will be obtained (Neter et al., 2003). However, most 

researchers take a simple way to model the Poisson regression without taking into account the 

assumptions corresponding to the model before doing any further analysis. This problem also 

happens when modelling the linear regression model (Karjanto, Abdul Razak, & Mahlan, 

2007). Failure to fulfil the assumptions will cause an inaccurate model which leads to an 

insignificant study. The objectives of the study are: (1)To identify the existence of departures 

in Poisson regression model through the appropriate diagnostic tools, (2) To fix the departures 

by using the appropriate goodness measurement. 

2. MATERIAL AND METHOD 

2.1 Data  

Data of lower respiratory illness (LRI) in infants which took repeated observations of infants 

over one year was used as a case study to model the Poisson regression model. This data was 

taken from an article of the National Blood, Heart and Lung Institute, United States namely 

“Application of Sample Survey Methods for Modeling Ratios to Incidence Densities 

(LaVange et al., 1994). About 284 children participated in the study and the outcome interest 

was the total number of times or counts of lower respiratory infection recorded for a year. The 

variable COUNT is the total number of infections that year.  

Six explanatory variables were evaluated including the variable RISK that is the number of 

weeks during that year for which the child is considered to be at risk (when a lower 

respiratory infection is ongoing, the child is not considered to be at risk for a new one), 

CROWDING is an indicator variable for whether crowded conditions occur in the household, 

SES is an indicator variable for whether the family’s socioeconomic status was considered 

low (0), medium (1), or high (2). The variable RACE is an indicator for whether the child 

was white (1) or not (0), and the variable PASSIVE is an indicator for whether the child was 

exposed to cigarette smoking. Finally the AGEGROUP variable takes the value 1, 2, and 3 

for below four months, four to six months, and more than six months respectively. 

2.2 Methodology 

Poisson distribution is suitable for the data where the response outcome is a count (Yi = 

0,1,2,...) with a large number of occurrences being a rare events (Heinzl & Mittlböck, 2003). 

The probability of Poisson distribution can be stated as follows:- 

      
     

  
                    (1) 

where f(y) denotes the probability of Y outcomes and Y! = Y(Y-1)...3.2.1. The mean and 

variance of Poisson distribution are E{Y} = µ and σ
2
{Y} = µ, respectively.  

Poisson regression model is one of the nonlinear regression model (Neter et al., 2003). Hence 

it is generally stated as   
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                         (2)  

Where Yi is the mean response for the ith case, f (Xi,β) is the response function that is also 

known as E(Yi); the mean response of Yi and εi is the error terms. Therefore, from equation 

(2), the Poisson regression model can best be written as  

     
     

                    (3) 

Where µi denotes the mean response and εi = Yi - µi is the error terms with E(εi) = 0. In 

Poisson regression model, two properties that should be considered are (a) Since Yi ~ Poisson 

(µi), therefore the error εi = Yi - µi  follows approximately a Poisson distribution with E(εi) = 

0, (b) Errors of the variance are constant since Var(Yi) = µ,  therefore Var(εi) = Var(Yi - µi) = 

µ. The mean response for the ith case that is E(Yi) can be written as µi in which it is the 

function of the set of predictor variables X1,..., Xp-1. In Poisson regression model, the notation 

µ(Xi,β) is denoted as the function that relates the mean response (µi) to Xi (the values of the 

predictor variables for case i) and β (the values of the regression coefficients). Some 

commonly used functions for Poisson regression are:  

              
                           (4) 

               
                                   (5) 

                  
                                 (6) 

Estimation of the parameters of a nonlinear regression model is usually carried out by the 

method of least squares or the method of maximum likelihood (Spiegelman & Hertzkmark, 

2005; Linda & Julio, 2001). The probability distribution of response variable Yi is  

       
               

   
 (7) 

From equation (7), the likelihood function is as follows: 

             
 
    

                          
   

   
 

                
                 

    
 
   

 (8) 

By taking logarithm function into equation (8), therefore the log-likelihood function is 

                       
             

         
 
    (9) 

The maximum likelihood estimates b0, b1,..., bp-1 can be obtained by differentiating equation 

(9) with respect to the vector of regression coefficients β then equals to zero. 

The test concerning a single regression parameter βk is commonly referred to as the Wald test 

(Yang et al., 2009). It is based on standard normal variable z which is based on large-sample 

test. On the other hand, the test concerning several regression parameters βk is called the 
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likelihood ratio test (Hardin et al., 2007) where it is based on a comparison between full 

model and reduced model.  

In building the Poisson regression model, the significant variables should be entered into the 

model. The criterion for adding or deleting the variables is based on the test of regression 

parameter. The method of stepwise selection procedures are frequently used in Poisson 

regression model building (Kleinbaum et al., 1998). It includes regression models in which 

the selection of predictive variables is carried out by an automatic procedure. The selection 

criteriafor Poisson models is by taking the largest log-likelihood calculation as the best since 

Poisson regression does not have a measure equivalent to R-squared (Neter et al., 2003). The 

log-likelihood is evaluated with a chi-squared test to determine the relative significance for 

the “p to enter” and “p to stay” where p denotes the p-value.  

The appropriateness of the fitted Poisson regression model needs to be examined before it is 

accepted for use. Therefore some diagnostics testing are applied to check the adequacy of a 

Poisson regression model. These include goodness of fit test which are Pearson Chi-Square 

goodness of fit (Neter et al., 2003): The test assumes that the Yij observations are independent 

and the sample size is rationally large. The test can detect major departures from a Poisson 

response function. However it is not responsive to small departures from a Poisson response 

function, and deviance goodness of fit (Neter et al., 2003 and Wang et al., 2007): Another test 

of fitting the Poisson response function is based on the model deviance (Wang et al., 2007). It 

can be defined as follows: 

                            
   

  
  

           
 
   (10) 

Where ûi is the fitted value for the ith case. If the Poisson response function is the exact 

response function and the sample size n is large, therefore the deviance will follow 

approximately a chi-square distribution with n – p degrees of freedom. Large values of the 

deviance show that the fitted Poisson model is inexact. Multicollinearity (Lazaridis, 2007): 

The issue of multicollinearity arises when there is a high degree of correlation (either positive 

or negative) between two or more predictor variables. If this happens, the model might be not 

adequate to represent the data set. Therefore the diagnostic tool is considered for identifying 

multicollinearity which is suitable in modeling Poisson regression by using the collinear 

quantity and condition index that can be obtained from the eigensystem (Lazaridis, 2007). The 

detection of multicollinearity is usually based on condition number (CN) or condition index of 

the data matrix where the matrix consists of the predictor variables. Three (3) conditions to 

determine the result of multicollinearity are (Neter et al., 2003): 

1. If the collinear quantity is less than 100 (κ < 100), therefore no serious 

multicollinearity exists. 

2. If the collinear quantity is between 100 and 1000 (100 < κ <1000), therefore moderate 

multicollinearity exists. 

3. If the collinear quantity is greater than 1000 (κ > 1000), therefore serious 

multicollinearity exists.  
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The condition index should be considered to verify the evidence firmly. By looking at the 

value from the condition index, if the condition index for every variables is greater than 30 (κj 

> 30), it indicates serious multicollinearity exists. Outliers (Neter et al., 2003; Shrestha, 

2007): Outliers are extreme observations which may lead departures to Poisson regression 

model (Neter et al., 2003). Once the outliers are encountered, the first suspicion is that the 

observations resulted from a mistake or other extraneous effect. Therefore residual plots 

against predicted value as well as box plots, stem and leaf plots and dot plots are useful to 

identify the outlier. Moreover, it’s helps to examine the adequacy of the linear part of the Poisson 

regression model (Neter et al., 2003).  Non-constant error variance (Neter et al., 2003): To model 

the Poisson regression where the data is counted, the variance must be constant (Neter et al., 

2003). If not, there exist a departure namely over-dispersion or under-dispersion. This problem 

normally happens in data calculation because it is difficult to have a constant variance. Figure 1 

contains the prototype of residual plots. The y-axis represents the residual whereas the x-axis 

represents the predicted value. Figure 1(a) indicates the constant error term variance whereas 

figure 1(b)–(d) indicates the non-constant error term variance (Neter et al., 2003).  

                           

Figure 1: Prototype Residual Plots. 

This study provides a flow chart to summarize the procedure in building the Poisson 

regression model. Figure 2 indicates the flow chart on how to develop the best Poisson 

regression model. 
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Figure 2: The flow chart of Poisson regression model. 

 

End  

The best Poisson regression 

model is created. 

The Poisson regression model fails 

to be created. There may be some 

mistakes or failure when collecting 

the data at the beginning stage. 

 

As a remedial, the departures will be fixed by using the 

appropriate goodness measurement. 

The best Poisson regression model is created. 

All goodness of 

measurement is 

held? 

Should use another method to analyze the data Construct a contingency table between dependent variable with every 

independent variable to check the correlations as a preliminary analysis. 

Start  

Identify the data by checking their dependent variable 

Decide if it’s a 

count or 

discrete? 

Plot the scatter plot to identify which one of the response functions 

are suitable to apply to the data. 

Perform Poisson regression model to the data by using the given 

response function. 

Identify the existence of departures through the appropriate 

diagnostic tools. 

Do they meet the 

assumption? 
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3. RESULTS AND DISCUSSION 

Statistical relationships between variables rely on notions of correlation as well as regression 

(Neter et al., 2003). These two concepts aim to describe the ways in which variables relate to 

one another. Therefore, as a preliminary analysis, data of lower respiratory illness in infants 

are presented into correlation matrix (Table 1) to identify the relationship among the 

variables. By referring to Table 1, it indicates that there are positive correlation between 

COUNT*PASSIVE and COUNT*CROWDING the significant level at 0.01. For 

COUNT*SES, it indicates a significant positive correlation at 0.05.  

To identify which functions are to be used into this data, scatter plot for every variables were 

displayed. Figure 2 shows the scatter plots. From the scatter plots, the pattern looks like an 

exponential function. It shows that the exponential function is a suitable function to be applied 

into this data. 

Table 1: Correlation matrix. 

 

Regression analysis attempts to determine the best "fit" between two or more variables. Thus, 

Poisson regression model is fitted using SAS software to predict the values of a dependent 

variable namely COUNT. Based on the pattern in Figure 3, the general Poisson regression 

model is 

          
                             

                         
  (11) 
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Figure 3: Scatter plots. 

By taking the natural log to the above equation, the Poisson regression model will become a 

linear model where it can be written as follows: 

                                                                    
   (12) 

                                                      
             (13) 

In the LRI data, the model building began with the six independent variables that were 

considered fundamental as the key explanatory variables. They are RISK, PASSIVE, 

CROWDING, SES, AGEGROUP and RACE. By applying the stepwise method, researchers 

recommended the PASSIVE and CROWDING variables in the model since there is 

significance which is shown by the stepwise method. Table 3.4.5 shows the analysis of 

parameter estimates after considering the stepwise method. It indicates that all the variables 

are strongly significant since p-values are less than 0.05. Hence, the Poisson regression model 

will be 

                                                     (14) 

According to Table 2, the value of collinear quantity is κ = 9 which is less than 100. It 

indicates that no serious multicollinearity exists. Besides, the condition index for every 

variable is less than 30 which indicates that no serious multicollinearity exists. 

Table 2: Collinearity diagnostics of LRI data. 

Variable Eigenvalue 
Condition 

Index 

Proportion of Variation 

Intercept Passive Crowding 

Intercept 2.31813 1.00000 0.05921 0.06536 0.07145 

Passive 0.42432 2.33733 0.01945 0.39591 0.76848 

Crowding 0.25755 3.00010 0.92134 0.53873 0.16006 
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To detect the existence of departures, the goodness of fit test was applied to the Poisson 

regression model (Neter et al., 2003). The tests are Pearson Chi-Square and Deviance 

goodness of fit tests. Both tests used the following hypothesis testing; 

                                         (15)  

From the SAS program, the result shows that X
2
 = 520.8575 and DEV(X0, X1, X2, X3) = 

416.7219. The critical value for both tests is x
2
(0.95, 281) > x

2
(0.95, 100) = 124.3. Since X

2
 = 

520.8575 < 124.3 and DEV(X0, X1, X2, X3) = 416.7219 < 124.3, this result leads to accept the 

null hypothesis. It indicates that this Poisson regression model is an appropriate model. The 

value of R
2 

is 0.0562 which indicates that about 5.62% from the total variation can be 

explained by the Poisson regression model. This number does not give a better result because 

the variance is non constant. Figure 4 shows the plot of residual versus predicted value. 

It indicates that there is a strong statistical evidence that count variation is dependent on the 

values of the predictor variables. A transformation of count might be useful in reducing non-

constant variance. 

 

Figure 4: Plot of Residual versus Predicted Value. 
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Figure 5(a): Count Vs Crowding. 

 

Figure 5(b): Count Vs Passive. 

Figure 5(a) and 5(b) contain a box plot for variable CROWDING and PASSIVE. It shows that 

there exist and outliers. From the SAS program, there are six observations that are encounter 

as an outlier. Table 3 indicates the list of the outlying observation.  After deleting the six 

observations, no observations are qualified as outliers. 

Table 3: List of the outlying observations. 
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Figure 6: Plot of Residual versus Predicted Value (After removing the outliers). 

Figure 6 contains the plot of residual versus predicted value after removing the outliers. There 

is strong statistical evidence that count variation is dependent on the values of the predictor 

variables although six observations that are qualified as outliers are deleted. A transformation 

of count might be useful in reducing non-constant variance.  

Although the goodness of fit test shows that the model is appropriate, we cannot conclude that 

this model is the best model because there is strong statistical evidence that count variation is 

dependent on the values of the predictor variables although six observations that are qualified 

as outliers are deleted. A transformation of count might be useful in reducing non-constant 

variance (Neter et al., 2003). Moreover the value of R
2 

is 0.0562 which indicate that about 

5.62% from the total variation can be explained by the Poisson regression model. This 

number does not give a better result since the variance is non-constant. This means there exist 

an overdispersion.  According to Maura, Charles, and Gary (2000), to manage an 

overdispersion, the researcher should assume a more flexible distribution such as the negative 

binomial since this data is a count data. Overdispersion happens when the observed variance 

is larger than the nominal variance for a particular distribution (Dean, 1998). The Poisson 

regression model assumes that the mean and variance of the dependent variable is equal but in 

practice the data may display overdispersion or extra-Poisson variation, i.e a situation where 

the variance exceeds the mean (Ismail & Jemain, 2005). Since overdispersion is able to have a 

major impact on inference, further analysis needsto be done by using Generalized Estimating 

Equations (GEE) based approach (Maura et al., 2000; Morel & Neerchal, 2008) instead of 

using another approach such as scaling factor method (McCullagh, 1989). 

4. CONCLUSION AND RECOMMENDATION 

This study used the total number of lower respiratory infection data among infants recorded 

for a year. Specifically, this study isto find the regression relationship between response 

variable that is the total number of times or counts of lower respiratory infection recorded for 

the year (COUNT) and six explanatory variables such as the number of weeks during that 

year for which the child is considered to be at risk (RISK), the crowded conditions 

(CROWDING), the socioeconomic status (SES), the race of the child (RACE), smoking 

exposure (PASSIVE), and the age of child (AGEGROUP). Since the response variable is a 

count, therefore Poisson regression model is suitable for this data. The Pearson test of 

correlation matrix shows that there are positive correlation between COUNT*PASSIVE and 

COUNT*CROWDING at 0.01 level of significant. For COUNT*SES, it indicates positive 
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correlation at 0.05 level of significant. The model building process of the Poisson regression 

model is stepwise method. This method shows that variables which are recommended are 

PASSIVE and CROWDING since both are significant. Fortunately, no serious 

multicollinearity exist in the model. 

REFERENCES 

Agarwal, D. K., Gelfand, A., & Citron-Pousty, S. (2002). Zero-inflated model with 

application to spatial count data. Environmental and Ecological Statistics, 9, 341-355. 

Bender, R. & Heinemann, L. (1995). Fitting nonlinear regression models with correlated 

errors to individual pharmacodynamic data using using SAS software. Journal of 

Pharmacokinetics and Pharmacodynamics, 23, 87-100. 

Charnes, A., Frome, E. L., & Yu, P. L. (1976). The equivalence of generalized least squares 

and maximum likelihood estimation in the exponential family. Journal of the American 

Statistical Association, 71, 169-172. 

Cyrus, S. & Guohua, L. (1999). Homicide mortality in the United States, 1935-1994: Age, 

period, and cohort effects. American Journal of Epidemiology, 11, 1213-1222.  

Dean, C. B. (1998). Overdispersion, in Encyclopedia of Biostatistics (4th vol.) (P. Armitage 

& T. Colton, Eds.) (pp. 3226-3232). New York: John Wiley & Sons, Inc. 

El-Basyouny, K. & Sayed, T. (2009). Collision prediction models using multivariate Poisson-

lognormal regression. Accident Analysis and Prevention, 41, 820-828. 

Frome, E. L., Kutner, M. H., & Beauchamp, J. J. (1973). Regression analysis of Poisson 

distributed data. Journal of the American Statistical Association, 68, 935-940. 

Hall, D. B. (2000). Zero-inflated Poisson and binomial regression with random effects: A case 

study. Biometrics, 56, 1030-1039. 

Hardin, J. W., Yang, Z., Addy, C. L., & Vuong, Q. H. (2007). Testing approaches for 

overdispersion in Poisson regression versus the generalized Poisson model. Journal of 

Biometrical, 49, 565-584. 

Heinzl, H. & Mittlböck, M. (2003). Pseudo R-squared measures for Poisson regression 

models with over- or underdispersion. Computational Statistics & Data Analysis, 44, 

253-271. 

Ismail, N. & Jemain, A. A. (2005). Generalized Poisson regression: An alternative for risk 

classification. Jurnal Teknologi, 43, 39-54. 

Karjanto, S., Abdul Razak, N. A., & Mahlan, S. B. (2007). ProsedurPembinaan Model 

Linear. Institut Penyelidikan, Pembangunan dan Pengkomersilan, Universiti Teknologi 

MARA, Shah Alam. 

Kleinbaum, D. G., Lawrence, L., Kupper, L. L., Muller, K. E., & AzharNizam, A. (1998). 

Applied Regression Analysis and Multivariate Methods (3rd ed.). Duxbury Press. 



ESTEEM Academic Journal  

Vol. 10, No. 1, June 2014, 40-54  

 

  

 

p-ISSN 1675-7939; e-ISSN 2289-4934 

© 2014 Universiti Teknologi MARA (Pulau Pinang) 

 

53 

LaVange, L. M., Keyes, L. L., Koch, G. G., & Margolis, P. E. (1994). Application of sample 

survey methods for modelling ratios to incidence densities. Statistics in Medicine, 13, 

343-355. 

Lazaridis, A. (2007). A note regarding the condition number: The case of spurious and latent 

multicollinearity. Journal of Quality and Quantity, 41, 123-135. 

Linda, L. H. & Julio, M. S. (2001). Generalized least squares methods for bivariate Poisson 

regression. Communications in Statistics – Theory and Methods, 30, 263-277. 

Loomis, D., Dufort, V., Kleckner, R. C., & Savitz, D. A. (1999). Fatal occupational injuries 

among electric power company workers. American Journal of Industrial Medicine, 35, 

302-309. 

Maura,  E. S., Charles, S. D., & Gary, G. K. (2000). Categorical Data Analysis Using the SAS 

System (2rd ed.). Cary, NC: SAS Institute Inc.  

McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models (2nd ed.). London: 

Chapman and Hall. 

Morata, L. B. (2009). A priori ratemaking using bivariate Poisson regression model. 

Insurance: Mathematics and Economics, 44, 135-141. 

Moradi, T., Nyrèn, O., Bergström, R., Gridley, G., Linet, M., Wolk, A., Dosemeci, M., & 

Adami, H. (1998). Risk for endometrial cancer in relation to occupational physical 

activity: A nationwide cohort study in Sweeden. International Journal of Cancer, 76, 

665-670. 

Morel, J. G. & Neerchal, N. K. (2008). Ratio estimation via Poisson regression and 

Generalized Estimating Equations. Statistics and Probability Letters, 78, 2188-2193. 

Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (2003). Applied Linear 

Regression Modes. Irwin: McGraw-Hill. 

Osgood, D. W. (2000). Poisson-based regression analysis of aggregate crime rates. Journal of 

Quantitative Criminology, 16, 21-43. 

Shrestha, S. L. (2007). Time series modelling of respiratory hospital admissions and 

geometrically weighted distributed lag effects from ambient particulate air pollution 

within Kathmandu valley, Nepal. Project report, Kathmandu, Nepal. 

Shults, J., Sun, W., Tu, X., & Amsterdam, J. (2005). On the violation of bounds for the 

correlation in generalized estimating equation analyses of binary data from 

longitudinal trials. Technical Report 200501, Department of Biostatistics and 

Epidemiology, University of Pennsylvania School of Medicine. 

Spiegelman, D. & Hertzmark, E. (2005). Easy SAS calculations for risk or prevalence ratios 

and differences. American Journal of Epidemiology, 162, 199-200. 



ESTEEM Academic Journal  

Vol. 10, No. 1, June 2014, 40-54  

 

  

 

p-ISSN 1675-7939; e-ISSN 2289-4934 

© 2014 Universiti Teknologi MARA (Pulau Pinang) 

 

54 

Waltoft, B. L. (2009). A SAS-macro for estimation of the cumulative incidence using Poisson 

regression. Computer Methods and Programs in Biomedicine, 93, 140-147. 

Wang, H. M., Kalwani, M. U., & Akcura, T. (2007). A Bayesian multivariate Poisson 

regression model of cross-category store brand purchasing behavior. Journal of 

Retailing and Consumer Services, 14, 369-382.  

Yang, Z., Hardin, J. W., & Addy, C. L. (2009). A score test for overdispersion in Poisson 

regression based on the generalized Poisson-2 model. Journal of Statistical Planning 

and Inferenc, 139, 1514-1521. 

 


	ABSTRACT
	1. INTRODUCTION
	2. MATERIAL AND METHOD
	2.1 Data
	2.2 Methodology

	3. RESULTS AND DISCUSSION
	4. CONCLUSION AND RECOMMENDATION
	REFERENCES
	Editorial Board_Foreword_Contents.pdf
	Front Cover
	Editorial Board_Foreword_Contents
	EDITORIAL BOARD
	FOREWORD
	CONTENTS OF JOURNAL




