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ABSTRACT 

 

In order to optimize the turning operation on titanium alloy, one needs to 

understand how different parameter combinations serve under varied 

conditions and needs. It is critical to compare single and multiple objectives 

in optimization. This study focused on single and multi-objective optimization 

evaluations for the primary performance responses of surface roughness (SR) 

and tool flank wear (TW), aiming for optimal turning process parameters. To 

examine the effects of feed rate (f), cutting speed (R), depth of cut (d), cutting 

angle (X), and mist inlet pressure (P) on the responses of both SR and TW, 

Taguchi L27 orthogonal arrays were used in this study. Moreover, analysis of 

variances (ANOVA) and grey relational analysis (GRA) have been 

incorporated in this study, where the former was used to study the influence of 

each parameter on SR and TW while the latter was used to determine the best 

combinations for the multi-objective optimization process. The results 

revealed that for single-objective optimization of SR, the optimal values for f, 

R, d, X, and P were found to be 0.3 mm/rev, 250 rpm, 1.5 mm, 100 degrees, 

and 1 bar mist inlet pressure, respectively. For single-objective optimization 

of TW, the optimal values for f, R, d, X, and P were found to be 0.20 mm/rev, 

250 rpm, 0.5 mm, 50 degrees, and 3 bar mist inlet pressure, respectively. 

Meanwhile, for multi-objective optimization, the optimal values for f, R, d, X, 

and P were found to be 0.30 mm/rev, 500 rpm, 2.0 mm, 75 degrees, and 1 bar 

mist inlet pressure, respectively. These optimal combinations of turning 

parameters resulted in the lowest SR and TW simultaneously. 
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Introduction 
 

Machining a low heat conductivity, low elastic modulus, and work-hardening 

Titanium provides an increasingly challenging task [1]. Numerous industries, 

including aerospace, maritime industries and medical devices use Titanium-

grade-5 alloy. While these alloys are tough to process, there has been extensive 

study done on how to manufacture them sustainably while considering 

technical, financial, and environmental considerations. For Titanium alloy 

machining, adopting the proper process parameters is critical to attaining 

optimal machining efficiency [2]. Surface roughness and tool wear are 

important variables in machining operations that affect the final products 

quality as well as the productivity of the process [3]. Optimizing 

manufacturing processes requires an understanding of their significance and 

their relationship to machining parameters. Surface roughness has a direct 

impact on machined components use and appearance [4]. Roughness 

differences can have an impact on performance even in small applications, 

such as sealing, friction, or appearance. Surface roughness can affect wear 

characteristics, fatigue life, and corrosion resistance in precision components, 

as those found in medical or aeronautical systems. The cost and lead time of 

additional finishing procedures might be affected by determining if the desired 

surface finish can be achieved. The efficiency and cost of production are 

directly impacted by tool wear. Early wear can result in more frequent tool 

replacements, downtime for replacements, and higher tooling costs. 

Dimensional accuracy and surface finish may deteriorate with tool wear, 

impacting item quality and raising the possibility of scrap or rework [5]. 

Excessive tool wear can compromise the machining process predictability and 

dependability by causing vibration, a poor surface finish, and even tool 

breakage. Higher cutting speeds typically result in increased tool wear in 

response to machining parameters because they generate higher temperatures 

and frictional forces [6]. On the other hand, by encouraging effective chip 

removal and cutting dwell time, ideal speeds can lessen tool wear. If proper 

cutting speeds and cut depths are not achieved, higher feed rates may result in 

greater tool wear. To preserve tool life and achieve specified surface finishes, 

proper feed rates are essential. Particularly in harder materials, deeper cuts can 

result in more tool wear. Effective material removal without undue tool wear 

requires balancing the depth of cut with other parameters. 

The turning process is affected by several aspects that greatly influence 

the quality and efficiency of the procedure. These considerations include 

cutting speed, feed rate, tool geometry, tool wear, the characteristics of the 

workpiece material, such as thermal diffusivity and hardness, and the use of 

coolants [7]. Additionally, the depth of cut, feed speed, and the nose radius of 
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the cutting insert are highlighted as key parameters determining the SR and 

dimensional accuracy of the machined component [8]. Vibration during the 

machining process can significantly influence the quality of the treated 

materials and potentially cause damage to the tool and machine [9]. The 

application of multi-objective optimization techniques, such as the Taguchi 

method, has been proven to be successful in optimizing process parameters 

and boosting the surface quality of machined components [10]-[11]. This 

current study, based on existing literature, intends to analyze the influential 

parameters of f, R, d, X, and P. 

Optimal turning performance has been linked to specific machining 

parameters, such as R, f, and d [12]. This association highlights the critical role 

of these parameters in achieving optimal performance in turning operations. In 

addition, lathe machining parameters like R, f, and d have been found to 

accelerate tool wear and affect surface finishing [13]. This finding emphasizes 

the need to control and optimize these parameters to ensure the longevity and 

surface finish quality of tool. Not just that, the cutting tool rake angle has been 

identified as a significant parameter affecting the main cutting force, along 

with machining parameters such as R and f [14]. This finding provides valuable 

insights into how the cutting tool rake angle and other machining parameters 

affect the cutting force in the lathe process.  

The impact of f and R on SR during the machining of stainless steel has 

been highlighted, indicating their significant effect on the turning process [15]. 

This finding emphasizes the significance of these parameters in ensuring the 

quality of the final product, particularly when machining stainless steel. 

Likewise, in common turning processes, performance traits have been closely 

linked with cutting parameters like the rate of feed, speed of cutting, and cut 

depth [16]. This correlation highlights the significance of these parameters in 

determining the performance characteristics of turning operation. 

Additionally, increasing cutting feed rates and spindle speeds has been 

shown to improve the processing efficiency of remanufactured lathes, 

consequently reducing processing time [17]. This finding highlights the 

potential benefits of increasing cutting feed rates and spindle speeds for 

enhancing processing efficiency and reducing processing time. In short, these 

parameters have been extensively studied and shown to have a significant 

impact on various aspects of the turning process, including vibration, SR, TW, 

and processing efficiency. This illustrated the complexity of the turning 

operation, as well as the need for continuous research and optimization in this 

field. 

In order to understand how different solutions perform under various 

conditions and needs, it is important to compare single and multiple goals 

optimization in turning titanium alloy. Through single and multi-objective 

optimization, the primary goal of this work is to thoroughly examine and 

optimize each machined SR and TW's process parameters. The goal of the 

study is to improve knowledge of how important process variables like f, R, d, 
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X, and P relate to the final machining response characteristics. By employing 

the Taguchi method and Grey Relational Analysis (GRA), the goal is to 

develop optimized conditions for turning Titanium alloy that ensure superior 

turning performance. 

The Taguchi technique has been widely applied in manufacturing to 

enhance processes with single performance criteria by selecting the best 

process parameters. However, multi-objective optimization is outside the 

scope of the conventional Taguchi approach. Thus, the Taguchi approach is 

combined with GRA to assist this matter. A more complex multi-performance 

characteristics optimization may be successfully solved using the normalizing 

assessment approach known as GRA [18]. The raw data is then converted into 

SN ratio values for the Taguchi analysis. The "lower-the-better" rule applies to 

SR and TW responses, as Equation (1); 
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where, n  is the number of replications, ijy  is the observed response value for 

1,2,3, ,i m= K  and 1,2,3 ,j n= K  

GRA is introduced for the optimization of multi-performance 

characteristics. The GRA was founded on a linear normalization of the data in 

the range of zero to one. To prevent the impact of using various units and to 

lessen unpredictability, the ijy is normalized as (0 1)ij ijz z  . The normalized 

experimental data ijz  may be written as Equation (2) and (3): 
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(3) 

The ideal normalized results should equal one, the greater the 

normalized results, the better the performance. Next, in order to measure the 

degree of correlation between the optimal (most advantageous) and actual 

normalized experimental results, the gray relational coefficient is calculated. 

Equation (4) can be used to express the grey relationship coefficient. 
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The ideal normalized results should equal one, the greater the 

normalized results, the better the performance. Next, in order to measure the 

degree of correlation between the optimal (most advantageous) and actual 

normalized experimental results, the gray relational coefficient 
ijz  can be 

expressed as Equation (4): 

 

( ) ( ) ( )min max max,oj ij ijx x  = =  +   +   (4) 

 

for 1,2,3, ,i m= K  and 1,2,3, ,j n= K  

where, ij oj ijx x = −   

min min , 1, 2,3, , ; 1, 2,3, ,ij i m j n =  = =K K   

max max , 1,2,3, , ; 1,2,3, ,ij i m j n =  = =K K  

 =  distinguishing coefficient, ( )0,1    

The value of   is set to 0.5. The weighted sum of the grey relational 

coefficients for a certain experiment is used to calculate the grey relational 

grade, using Equation (5),  
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The grey relational grade, ( ),o iX X , represents the level of similarity 

between the comparability sequence, iX  and reference sequence oX . 

Additionally, the sum of the weights 
1

1
n

jj
w

=
= , ensures that the weights add 

up to one. Equation (6) can be used to obtain the estimated grey relational 

grade,   when the optimal level of the machining parameters is utilized. 
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The variable 
m  represents the overall average of the grey relational grade,

i& 

represents the average of the grey relational grade at the optimal level, and n  

represents the number of the machining parameters that have a substantial 

impact on numerous performance aspects. 

 Multi-objective optimization in the turning of titanium alloys is 

necessary to simultaneously address conflicting objectives like productivity, 

tool wear, surface finish, and thermal effects. By finding a balance between 

these factors, the overall machining process can be made more effective, 

economical, and suitable for the demanding needs of titanium in industry by 
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striking a balance between these elements. In the present study, the wear of the 

tool and the roughness of the machined surface are used to evaluate the 

machining capabilities of Titanium grade-5 alloy. Turning studies were 

performed using SANDVIK CNMG carbide inserts utilizing vegetable oil-

based under lowest quantity lubrication. This work has attempted to ascertain 

the effects of four process parameters in order to identify the ideal parametric 

combination for obtaining the best SR with the least amount of TW. Two 

responses, namely, the SR and TW have been directly integrated utilizing the 

Taguchi technique in conjunction with GRA. Thus, this technique may greatly 

reduce the optimization of the complex multiple performance characteristics 

into a single objective optimization problem. The parameter that significantly 

impacts the multi-performance characteristics is determined using ANOVA. 

An optimal set of conditions was employed to conduct a confirmation 

experiment to validate the study. 

 

 

Experimental 
 
All the tests were performed on Colchester Harrison Tornado T4 CNC Lathe, 

having an integrated vegetable oil-based under minimum quantity lubrication. 

Fresh implants with good adhesion and flank wear resistance (SANDVIK 

GC1205 PVD-coated carbide grades) were utilized in all tests in accordance 

with manufacturer instructions. Titanium Alloy (TI-6Al-4V) grade 5 was used 

as the workpiece material in all tests, with 20 mm in diameter and 300 mm in 

length. Figure 1 shows the experimental setup for turning operation. Key 

physical/mechanical parameters and chemical composition of the workpiece 

materials are specified in Table1 and Table 2 accordingly. 
 

 
 

Figure 1 : Experimental setup for turning operation 

Workpiece 

Insert Tool holder 
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Table 1: Physical properties of Titanium grade 5 [19] 

 
Properties Value 

Density 4.43 x 103 kg/m3 

Hardness, Rockwell C 33 HRC 

Modulus of Elasticity 120 GPa 

Thermal Expansion (20 C) 8.6 x 10-6 ˚C-1 

Specific Heat Capacity 526.3 J/kg-°C 

Thermal Conductivity 6.7 W/m-°C 

Fracture Toughness 43 Mpa-m1/2 

Tensile Strength (MPa) 900 - 1160 

Melting Point (C) 650 

Machinability Low 

 

Table 2 : Weightage alloy in the Ti-6Al-4V 

 
Component Wt. % 

Al 6.2 

Fe 0.25 (max) 

O 0.2 (max) 

Ti 90 

V 4.1 

 

To get an understanding of the fundamental operating parameters to turn 

TI-6Al-4V and their impact on tool performance, an initial series of 

exploratory tests was conducted. Digimizer image analysis software was used 

to measure and perform pre- and post-machining inspections on each insert 

tool. To remove any impurities based on hydrocarbons or detergents, as well 

as any adhering particles, all inserts were thoroughly cleaned in an acetone 

ultrasonic solution. To the greatest extent practical, the tests were carried out 

in conformance with ISO 3685:1993(en) Tool-life testing with single-point 

turning tools requirements. 

All the tests were conducted utilizing the Taguchi design of experiment 

(L27 orthogonal arrays), which took into consideration five parameters that 

were modified at three distinct levels. A number of important parameters have 

been considered to ensure a robust and effective optimization strategy. The 

process parameters and their values are listed in Table 3 based on manufacturer 

recommendations, prior research experience, and trial-and-error experiments. 

With a portable Marsurf surface profilometer, the machined SR was averaged 

over three points (15 mm apart, the middle and the opposite ends) for each 

turning test. The measurement recorded follows the guideline from ISO 4288 

standards. After that, the flank wear of the cutting tools for each turning test 

was analyzed using a Mitutoyo Insert Maker. The Taguchi method was used 

to maximize each objective response through single objective optimization. 
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Then, all objective functions were simultaneously optimized using the 

Taguchi-based GRA technique. These procedures determined parameter 

settings for the best and worst values of each objective function. The results 

were confirmed through additional calculations. Additionally, a formula was 

established to determine each parameter's contribution ratio to the outcomes. 

Lastly, further confirmatory tests are undertaken to establish the optimal 

parameter combination. 

 

Table 3 : Process parameters and their levels 

 
Process 

Parameter 
f R d X P 

 mm/rev rpm mm deg bar 

Level 1 0.20 250 0.5 50 1 

Level 2 0.25 500 1.5 75 2 

Level 3 0.30 1000 2.0 100 3 

 

 

Results and Discussion 
 

Taguchi analysis was performed to identify the effects of each component on 

each response. The most relevant criteria were chosen for each objective. The 

contribution ratios of all parameters were determined numerically to express 

the significance of parameters. Subsequently, GRA was undertaken to achieve 

multi-objective optimization research attempting to satisfy every objective. 

 

Single objective optimization on SR 
Based on identified machined SR on 27 experiment tests, the mean of SR was 

from 2.220 to 6.844 µm. Figure 2 illustrates the Pareto chart of the SR 

standardized effects. The x-axis standardized impact reveals how much of an 

influence each parameter has on the response or outcome, in this instance SR. 

The greater the standardized effect, the more of an impact the parameter has 

on the result. Furthermore, 𝛼 = 0.05, the significance level, is illustrated by 

the red dashed line. This implies that a bar has a statistically significant impact 

on the result if it goes beyond this line. The strongest effect is feed rate (f), 

followed by cutting speed (R), mist inlet pressure (P), cutting angle (X) and 

depth of cut (d), even if none of them passed the line. Table 4 demonstrates 

analysis of variance (ANOVA) for SR response. It demonstrates that the P-

value is smaller than the normal significance level of 0.05, thus implying that 

the f has a statistically significant impact on the SR response, accounting for 

63.6% of the response variation. As the f grows, SR also rises. This is because, 

when f is elevated, helicoids furrows are created owing to the movement of the 

tool with respect to the workpiece and the tool shape. These furrows develop 

deeper and larger as f increases [20]. 
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Figure 2 : Pareto chart for SR response (𝜇𝑚), 𝛼 = 0.05 

 

Table 4 : ANOVA for SR response at 𝛼 = 0.05 

 

Source DOF 
% 

Contrib. 
Adj SS 

Adj 

MS 
F-value P-value 

f (mm/rev) 2 92.00% 52.7221 26.361 3760.13 0.000 

R (rpm) 2 5.00% 2.8040 1.4020 199.98 0.000 

d (mm) 2 0.0% 0.1429 0.0715 10.190 0.001 

X (deg) 2 0.0% 0.3786 0.1893 27.00 0.000 

P (bar) 2 2.00% 1.1492 0.5746 81.96 0.000 

Error 16 0.0% 0.1122 0.007   

Total 26 100.00%     

 

The R also appeared to have a substantial effect on the reaction with a 

contribution of 4.89%. On the other hand, other parameters such as d, X, and 

P do not appear to have a substantial effect on the outcome, as their P-values 

are rather high. This shows that adjustments in these parameters do not 

significantly alter the variance in the outcome. Figure 3 displays the primary 

effect plot of SN ratio for each parameter to machined SR. It clearly shows a 

sharp increase in the average SR with increasing f, less noticeable variations 

in SR at different R levels, a relatively constant SR at different d, some 

variations in SR with changing of X, and a slight decrease in SR with 

increasing of P. It can be determined that, for the sole purpose of decreasing 

machined SR (2.220 µm), the turning parameters must be 0.30 mm/rev for f, 

250 rpm for R, 1.5 mm for d, 100° for X, and 1 bar or P accordingly. 
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Figure 3: Main effect plot of SN ratios for SR 

 

Single objective optimization on TW 
Based on measured TW on 27 experiment tests, the TW ranged from 0.101 to 

0.301 mm. Figure 4 displays, the Pareto chart of the TW response with 

standardized effects. It demonstrates that F(A) has a significant effect, 

followed by cutting speed (B), depth of cut (C), and mist inlet pressure (E). 

cutting angle (D) however, does not appear to have major influence since the 

bar is below the dashed line. 

Table 5 indicates an ANOVA for TW response. The regression model 

in the ANOVA table displays the overall variation in the result that the model 

can be accounted for. It reveals that the model explains 97.27% of the variance 

in the result. The effect of f on the TW response is statistically significant with 

variance of 66.60% in the response. The R parameter contributes 23.43% to 

the total variance with an F-value of 179.98. Moreover, d parameter has a 

smaller but still substantial influence at 4.94% with an F-value of 37.94. The 

X parameter and P have minor impacts on variance at only 0.11% and 2.19% 

respectively, reflected in their low F-values. However, the P-value for X was 

at 0.378 whereas for P was at 0.001, demonstrating that the former had minor 

impact on the TW whilst the latter was statistically significant. 
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Figure 4: Pareto chart for TW (mm) response, at 𝛼 = 0.05 

 

Figure 5 displays the major effect plot of SN ratio for each parameter 

in TW response. The research showed that the f greatly affected the TW, with 

an increase in f corresponding to a large increase in mean of TW [21]. The R 

indicated a small drop in the TW as it rose. However, the delta value was rather 

minor, demonstrating that the R had negligible effect on the TW compared to 

other components. The d showed considerable fluctuation with the TW, 

indicating that the d might not have had a substantial effect on the TW. 

Moreover, the P and X appeared to be reasonably stable throughout different 

levels suggesting low impact onto the TW for signal to noise ratio. It may be 

deduced that, for the single purpose of minimizing TW, the turning parameters 

must be 0.20 mm/rev for f, 250 rpm for R, 0.5 mm for d, 50° for X, and 3 bar 

for P. 

 

Table 5: ANOVA for TW response 

 

Source DOF 
% 

Contrib. 
Adj SS Adj MS F-Value P-Value 

f (mm/rev) 2 73.00% 0.080655 0.040327 1753.710 0.000 

R (rpm) 2 20.00% 0.022003 0.011001 478.420 0.000 

d (mm) 2 4.00% 0.00519 0.002595 112.850 0.000 

X (deg) 2 0.0% 0.000061 0.000003 1.330 0.293 

P (bar) 2 1.00% 0.001445 0.000723 31.430 0.001 

Error 16 2.00% 0.002299 0.000109   

Total 26 100%     
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Figure 5: Main effect plot of SN ratio for TW  

 

Multi-objective optimization 
Table 6 highlights the details of the grey relational generation. The table was 

divided into multiple columns, each representing a different component of the 

analysis. These columns contained normalization of SR and TW, deviation 

sequence of SR and TW, grey relation coefficient for SR and TW and grey 

relation grade value with rank. Each column comprised numerical data, precise 

up to four decimal places, which were the outcome of painstaking calculations 

and measurements. 

For each response, the grey relational coefficients are combined to 

create the grey relational grade; in contrast, this grade served as a thorough 

depiction of both SR and TW. By integrating the Taguchi technique and GRA, 

the multicriteria optimization issue is ultimately reduced to a single equivalent 

objective function optimization problem. A greater value of the grey relational 

grade implies that the related parameter combination is reaching the optimal. 

Table 7 provides the mean answer findings for the overall grey relationship 

grade. 

Figure 6 displays the primary effect plot of means grey relational grade 

which allows for multi-objective optimization. A higher f of 0.30 m/rev, R of 

500 rpm, d of 2.0 mm, X of 75°, and P of 1 bar are the optimal parameter 

settings for multi-objective optimization. Thus, at the optimal configuration 

designated as (f3, R2, d3, X2, P1) which give response values of 2.911 μm and 

0.101 mm for SR and TW, respectively. 
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Table 6 : GRA on the response of turning process 

 

Normalization 
Deviation 

Sequence 

Grey Relation 

Coefficient 

Grey Relation 

Grade 

SR TW SR TW SR TW Value Rank 

0.7065 0.8914 0.2935 0.1086 0.6301 0.8216 0.7258 6 

0.7782 0.9548 0.2218 0.0452 0.6927 0.9170 0.8049 2 

0.8542 1.0000 0.1458 0.0000 0.7742 1.0000 0.8871 1 

0.7888 0.7240 0.2112 0.2760 0.7030 0.6443 0.6737 8 

0.8354 0.7873 0.1646 0.2127 0.7523 0.7016 0.7270 5 

0.8736 0.8281 0.1264 0.1719 0.7982 0.7441 0.7712 3 

0.9091 0.4570 0.0909 0.5430 0.8461 0.4794 0.6627 9 

0.9551 0.4977 0.0449 0.5023 0.9175 0.4989 0.7082 7 

1.0000 0.5385 0.0000 0.4615 1.0000 0.5200 0.7600 4 

0.6850 0.6290 0.3150 0.3710 0.6135 0.5740 0.5937 12 

0.7033 0.5701 0.2967 0.4299 0.6276 0.5377 0.5827 14 

0.7635 0.6154 0.2365 0.3846 0.6788 0.5652 0.6220 11 

0.7012 0.2670 0.2988 0.7330 0.6259 0.4055 0.5157 18 

0.7649 0.3077 0.2351 0.6923 0.6802 0.4194 0.5498 17 

0.8088 0.3484 0.1912 0.6516 0.7234 0.4342 0.5788 15 

0.8141 0.2262 0.1859 0.7738 0.7290 0.3925 0.5608 16 

0.8502 0.2579 0.1498 0.7421 0.7694 0.4026 0.5860 13 

0.8932 0.3167 0.1068 0.6833 0.8240 0.4226 0.6233 10 

0.0000 0.1493 1.0000 0.8507 0.3333 0.3702 0.3518 27 

0.0703 0.2036 0.9297 0.7964 0.3497 0.3857 0.3677 25 

0.1357 0.2579 0.8643 0.7421 0.3665 0.4026 0.3845 21 

0.1808 0.1267 0.8192 0.8733 0.3790 0.3641 0.3716 24 

0.2479 0.1719 0.7521 0.8281 0.3993 0.3765 0.3879 20 

0.3429 0.2081 0.6571 0.7919 0.4321 0.3870 0.4096 19 

0.2226 0.0000 0.7774 1.0000 0.3914 0.3333 0.3624 26 

0.2517 0.0452 0.7483 0.9548 0.4006 0.3437 0.3721 23 

0.2952 0.0860 0.7048 0.9140 0.4150 0.3536 0.3843 22 

 

Table 7 : Response table for means of GRA 

 
Level f R d X P 

1 0.7467 0.5869 0.5948 0.5614 0.5298 

2 0.5751 0.5553 0.5629 0.5620 0.5664 

3 0.3769 0.5565 0.5410 0.5753 0.6025 

Delta 0.3698 0.0316 0.0538 0.0138 0.0727 

Rank 1 4 3 5 2 
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Figure 6: Main effect plot for means of grey relational grade 

 

Confirmatory experiment 
Once the optimum settings for the parameters were identified, the second 

phase involved forecasting the improvement of quality attributes using the 

optimal combination of parameters. The estimated grey relational grade, which 

is evaluated based on prior grey relational grade values were generated using 

Equation (6). An additional confirmatory experiment has been performed to 

verify this theory. Thus, to validate this prediction, a subsequent confirmation 

experiment has been carried out. Table 8 demonstrates, the comparison 

between the experimental and anticipated SR and TW under optimal 

circumstances, indicating a substantial correlation (improvement in the overall 

grey relational grade). 

 

Table 8: Comparison between initial level and optimal level 

 
 Initial Turning 

Parameter 

Optimal Turning Parameter 

 
Orthogonal 

array 

Prediction by 

Grey Relational 

analysis 

Confirmation 

experiment 

% 

improvement  

Setting 

Level 

f1, R2, d1, X2, 

P3 

f3, R2, d3, X2, 

P1 

f3, R2, d3, X2, 

P1 
 

SR (μm) 2.819  2.611 7% 

TW (mm) 0.139  0.101 27% 

Grey 

Relational 

Grade 

0.5594  0.8849 58% 

 Improvement of the grey relation grade = 0.3255  
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Conclusions  
 

This research addresses the implementation of orthogonal array in conjunction 

with grey relational analysis to optimize the responses when turning Titanium 

alloy grade 5, with its varied performance features. The optimization of 

numerous performance characteristics may be simplified to the optimization 

of a single performance characteristic, known as the grey relational grade, 

using GRA. Thus, this technique can greatly simplify the optimization of the 

complex multiple performance characteristics. Based on the results, 0.30 

mm/rev for feed rate, 250 rpm for cutting speed, 1.5 mm for cut depth, 100° 

for cutting angle, and 1 bar mist inlet pressure are the optimal values for single 

objective optimization of SR. However, to achieve the single objective 

optimization of decreasing TW, the turning parameters need to be set at 3 bar 

mist inlet pressure, 0.5 mm for depth of cut, 250 rpm for cutting speed, and 

0.20 mm/rev for feed rate. Meanwhile, for multiple objectives optimization, 

the optimal values for f, R, d, X, and P were found to be 0.30 mm/rev, 500 rpm, 

2.0 mm, 70°, and 1 bar mist inlet pressure respectively. Comparing single and 

multiple objectives in optimization is crucial because it helps us understand 

how different parameter combinations perform under varying conditions and 

needs. Single-objective optimization often seeks to maximize or minimize a 

single objective, while multiple-objective optimization simultaneously 

optimizes numerous objectives. Compare the trade-offs involved in giving one 

goal priority over another among several goals. In summary, multi-objective 

optimization enables industries to achieve cost savings, improve efficiency, 

and uphold quality standards by maximizing multiple competing objectives at 

once via multi-objective optimization. This approach has a particularly big 

impact on industries like precision manufacturing, automotive, aerospace, and 

energy, where productivity, quality, and low costs of materials are key success 

factors. 
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