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ABSTRACT 

 

The study proposes a modified Artificial Potential Field (APF) method 

integrated with the A* algorithm to enhance industrial robot path planning for 

obstacle avoidance. This approach addresses issues of local minima and 

unreachable targets within APF, mitigates the A* algorithm's poor real-time 

performance, and enhances obstacle avoidance success rates. Kinematic and 

workspace analyses of the robot utilize the Denavit-Hartenberg and Monte 

Carlo methods. The study analyses the principles and limitations of classical 

algorithms. The study introduces a modified APF algorithm to address issues 

of local minima and path oscillation, which is integrated with A* to guide 

movement towards the virtual target. After getting rid of local minima, the 

algorithm reverts to the APF method for further searching. Introducing a safe 

distance to restrict the repulsive field's influence resolves the issue of 

unreachable targets. Simulation results demonstrate that the modified 

algorithm efficiently plans obstacle-free paths in multi-obstacle environments, 

with target error controlled within 0.0121 m. 

 

Keywords: Path Planning; Kinematic; Artificial Potential Field; A* 

Algorithm; Industrial Robot 
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Introduction 
 

With the rapid advancement of smart manufacturing technologies, this study 

uses digital twin technology as the guiding idea to innovate and enhance the 

path planning strategy of industrial robots in smart manufacturing [1]. 

Industrial robots with six rotary joints (6R) are standard advanced equipment 

in smart manufacturing, effectively assisting in labour-intensive tasks such as 

machining, handling, and sorting, thus reducing the burden of tedious physical 

labour [2]. Given the complexity and dynamics of the robot's working 

environment, as well as the variability in the number and location of 

surrounding obstacles, it is imperative to find a safe obstacle avoidance path 

that can bypass all obstacles and reach the target smoothly [3]. 

An effective path planning algorithm significantly enhances robots' 

autonomous obstacle avoidance capability, thereby profoundly impacting their 

efficiency, work quality, and service life [4]. Generally, robot path planning 

methods can be broadly classified into two categories: global path planning 

and local path planning. A* algorithm [5], genetic algorithm [6], ant colony 

optimization algorithm [7], and dynamic programming algorithm are examples 

of global path planning algorithms, which are suitable for less environment 

change or static environment. The artificial Potential Field (APF)  method [8], 

particle swarm optimisation algorithm [9], and simulated annealing algorithm 

are local path algorithms, which are suitable for dynamic environments or 

completely unknown environments. Due to the complex working 

environments of industrial robots and the high requirements for real-time 

control, the APF method is often chosen for robot obstacle avoidance path 

planning [10]. Ji et al. [11] introduced virtual obstacles into the APF method 

to disrupt the equilibrium and solve the local minima, but it is still a challenge 

to select appropriate obstacles in practical applications. Abadlla et al. [12] 

combined the APF method with the fuzzy logic techniques, which alleviated 

certain local minimum challenges inherent in the classical APF method, 

although it could not completely alleviate the problem of the robot's repetitive 

oscillations. Ding et al. [13] proposed to integrate the positive hexagonal 

guidance method into the APF method to efficiently circumvent the local 

minima by navigating around obstacles; however, this greatly prolongs the 

operation time of robots in complex scenarios. 

In this paper, an obstacle avoidance path planning algorithm for 

industrial robots is proposed on the basis of previous research [10]-[13]. The 

efficiency of the algorithm is enhanced by refining the APF method, which 

represents the potential field in joint space. Additionally, the repulsive field 

function is strengthened by incorporating a safe distance, addressing the issue 

of the robot being unapproachable near the target. The APF methods were then 

integrated with the A* algorithm. When the robot's path encounters a local 

minimum, the A* algorithm guides the robot toward a virtual goal. Once the 

local minimum is resolved, the algorithm reverts to the enhanced APF method, 
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and path exploration is restarted until the destination is reached and the shortest 

path is determined. Using the digital twin idea, the path planning algorithm is 

simulated and optimised in a virtual environment, laying the foundation for 

validation on a physical robot. 

 

 

Methodology 
 

In the context of robotics, the section mainly discusses the theoretical basis for 

obtaining robot obstacle avoidance path planning through mathematical 

modeling and algorithm improvement. 

 

Robot DH model 
The 6R industrial robot comprises six rotating joints and mechanical links. 

Denavit-Hartenberg (DH) notation, as described by Hartenberg and Denavit 

[14], defines the spatial relationship between adjacent joint axes. Figure 1 

illustrates the standard DH links for the 6R industrial robot. To describe the 

pose of the robot's endpoint in Cartesian space, each joint is sequentially 

translated and rotated relative to a fixed coordinate frame. Table 1 summarizes 

the DH parameters of the 6R industrial robot, comprising four parameters i ,

id , i , ia  for each link in DH notation. 

 

 
 

Figure 1: Coordinate frame of 6R industrial robot 
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Table 1: DH parameters of 6R industrial robot 

 

 

Robot Kinematics and Workspace Strategy  

According to the DH notation, the homogeneous matrix 𝑇𝑖
𝑖−1  with the 

elementary rotations and translations describes the transformation from the 

two consecutive link coordinate frames [15], which can be expanded as: 
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The positional relationships of the links relative to the reference 

coordinate frame are derived by matrix operations [16]. Multiply the 

homogeneous matrices sequentially, and the homogeneous matrix 𝑇𝑖
𝑖−1  from 

the link coordinate frame {0} to frame {6} is expressed as: 
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In robotics, the location and orientation of the robot endpoint are 

precisely captured by two matrices R and P, which are closely related to the 

robot's joint angles 𝜃𝑖(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6) [17]. Through fine-grained 

calculations in kinematics, the robot's workspace is revealed, which consists 

of all realizable points reachable by the robot's end. The workspace is a well-

defined boundary that delimits the full extent of the robot's kinematic 

capabilities and is a prerequisite for the robot to achieve collision-free path 

planning [18]. The Monte Carlo method [19] is a numerical computation 

method that solves mathematical problems by iterative random sampling, 

which is fast and easy to compute and facilitates the use of computer-aided 

Link i /° id /m i /° ia /m Joint Range/° 

1 1  0.29 -90 0 -165°~+165° 

2 2 - 90 0 0 0.27 -110°~+110° 

3 3  0 -90 0.07 -110°~70° 

4 4  0.302 90 0 -160°~160° 

5 5  0 -90 0 -120°~+120° 

6 6 - 180 0.072 0 0 -400°~+400° 
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methods for accurate graphing. Therefore, the Monte Carlo method is usually 

employed to assess the availability of points in the robot’s workspace by 

leveraging random sampling techniques. The mathematical model of the robot 

implemented with the help of the MATLAB Robotics Toolbox is shown in 

Figure 2. The model is used to compute the robot's kinematics and workspace 

and can also be used to simulate complex path planning scenarios to advance 

robotics. 

 

 
 

Figure 2: Mathematical model of 6R industrial robot 

 

Robot collision detection model 
Effective collision detection between robots and obstacles is essential for path 

planning [20], and it is imperative to consider potential collisions between the 

various links of the robot. 6R industrial robots always operate in complex 

environments and encounter obstacles with irregular shapes in smart 

manufacturing. To simplify collision detection modeling, hierarchical 

bounding box techniques [21] are commonly utilized for obstacle 

approximation. Common types of bounding boxes include spheres, cylinders, 

Axis-Aligned Bounding Boxes (AABBs), Oriented Bounding Boxes (OBBs), 

K-Discrete Oriented Polytope (K-DOPs), etc [22]. Establishing complex 

bounding boxes and conducting collision detection requires more time. To 

satisfy the real-time demands of robot motion control, the paper chooses 

spheres to model the envelopes of obstacles due to their fewer parameters and 

faster calculation speed. By projecting spatial obstacles onto the xoy  𝑥𝑜𝑦, 

𝑦𝑜𝑧, and 𝑥𝑜𝑧 planes, the maximum and minimum values of the obstacle's 

projections on the 𝑥, 𝑦 and 𝑧 axes can be obtained as 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 

𝑧𝑚𝑎𝑥 , and 𝑧𝑚𝑖𝑛. Consequently, the center 𝑂(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) and radius 𝑅𝑗  of the 

bounding sphere are determined as: 
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Collision detection does not need to be considered during the robot's 

movement because the robot's base position remains fixed. Based on the 

mechanical structure and motion characteristics of the IRB120 robot, the 

cylindrical bounding box was utilized to represent the robot and obtain three 

cylindrical bounding boxes, as illustrated in Figure 3.  

 

 
 

Figure 3: Collision detection model of 6R industrial robot 

 

The position of a cylinder can be determined by its axis endpoint, which 

can be obtained through the homogeneous transformation matrix. 

Let 𝑅𝐿 represents the maximum radial extent of the robotic link, and denotes 

the endpoint of the cylindrical axis as  𝐴(𝑥𝐴, 𝑦𝐴, 𝑧𝐴), 𝐵(𝑥𝐵, 𝑦𝐵 , 𝑧𝐵). Then, a 

point 𝑃(𝑥𝑃 , 𝑦𝑃 , 𝑧𝑃) located on the axis of the cylinder, which corresponds to 

the line segment connecting points 𝐴 and 𝐵, can be represented as: 
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where s is a proportional coefficient. Therefore, the collision detection issue of 

the 6R robot is transformed into the issue of comparing the shortest distance 

𝑑(𝑃𝑖 , 𝑂𝑗) between a cylindrical bounding box and a spherical bounding box, 
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or the shortest distance 𝑑(𝑃𝑖 , 𝑃𝑖+2) between two cylindrical bounding boxes, 

with the sum of their respective. Whether a collision between each link and 

obstacle is determined as: 

 

( ) njiRROPDOPd jLijijiji ,...,2,1,3,2,1,),( _ ==+−==  (5) 

 

As for spatial multi-degree-of-freedom tandem robots, self-collision 

between two adjacent links is typically prevented by joint limitations or 

mechanical structures. Therefore, if a self-collision occurs, it will only happen 

between two links that are not directly joined. The determination of a collision 

between each link is assessed as: 

 

( ) 1,),( )2(2)2(_2 =+−== ++++ iRRPPDPPd iLLiiiiLLiii
 (6) 

 

Modified algorithm for robot path planning  

The modified algorithm combines the benefits of the APF method for smooth 

navigation around obstacles with the A* algorithm search for more effective 

obstacle avoidance paths. 

 

Artificial potential field method 
The APF method is a virtual force-based approach introduced by American 

scientist Khatib in the 1980s [23], which enables the robot to compute a 

feasible collision-free path during the moving process. As a classical robot 

path planning algorithm, the model is relatively simple, with fewer operations, 

high algorithmic efficiency, and most importantly strong adaptability to 

unknown environments. The force analysis of the APF method is illustrated in 

Figure 4.  

 

 
 

Figure 4: The force analysis of the robot in the APF method 
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where the circle, hexagons, and pentagon represent the locations of the robot, 

obstacles, and target respectively, which assumed as 𝑋𝑟, 𝑋𝑂(𝑖)(𝑖 = 1,2, . . . , 𝑛), 

𝑋𝑡. A virtual attractive potential field 𝑈𝑎𝑡𝑡 is established at the target location, 

while a virtual repulsive potential field 𝑈𝑟𝑒𝑝(𝑖) is created at the positions of 

obstacles. The total force 𝐹 directs the robot's movement, resulting from the 

attractive force, 𝐹𝑎𝑡𝑡 and the repulsive force, 𝐹𝑟𝑒𝑝(𝑖). These forces result from 

the influence of the potential fields on the robot, prompting it to advance 

toward the target along the path of decreasing potential energy, thereby 

ensuring a collision-free trajectory. The conventional attractive field function 

can be represented as: 

 

( )2
2

1
)( traratt XXdkXU −=  (7) 

 

where 𝑘𝑎 is the correction factor of the attractive potential field. 𝑑(𝑋𝑟 − 𝑋𝑡) is 

a vector which is an Euclidean distance from the position of the robot end 

effector to the target. The conventional repulsive field function can be written 

as: 
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where 𝑘𝑟(𝑖) is the correction coefficient of the repulsive potential field 

generated by each obstacle. 𝑑(𝑋𝑟 − 𝑋𝑜(𝑖)) is a vector representing the 

Euclidean distance from the position of the robot end effector to each obstacle. 

𝑑𝑜(𝑖) is a constant that indicates the range of repulsion influence. 

Therefore, the resultant potential field acting on the robot consists of 

gravitational and repulsive potential and can be expressed as: 

 
)()()( rreprattr XUXUXU +=

 
(10) 

 

The gravitational influence 𝐹𝑎𝑡𝑡(𝑋𝑟)  and the repulsion 𝐹𝑟𝑒𝑝(𝑋𝑟)  is 

induced by the potential energy can then be expressed as the opposite gradient 

of the potential energy function. 𝐹𝑎𝑡𝑡(𝑋𝑟) is given as: 

 

( )trarattratt XXdkXUXF −=−= ）（)(  (11) 



Enhanced Path Planning for Industrial Robot: Integrating Modified APF and A*  

323 

The resultant repulsion, 𝐹𝑟𝑒𝑝(𝑋𝑟)  is the sum of repulsion generated by 

each obstacle, derived from the opposite gradient of the repulsive potential 

field, given by: 
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The resultant force 𝐹(𝑋𝑟) acts on the robot is: 

 
)()()()( rreprattrr XFXFXUXF +=−=
 

(14) 

 

Based on the functional expression of the APF method it can be 

analyzed that it also has drawbacks and limitations in some aspects. One of the 

limitations is the occurrence of local minima. When the robot reaches a 
specific position in space, the gravitational force acting on it is canceled by the 

repulsive force exerted by nearby obstacles, resulting in a net force of zero. In 

such cases, the robot is unable to determine where to go next, causing the robot 

to stop or wander. To address this issue, the A* algorithm can be initiated to 

perform a heuristic search until the local minimum is jumped out and a valid 

route from the initial position to the target position is obtained. 

An additional constraint emerges when the obstacle is situated near the 

target, hindering the robot's access to it. According to Equations (11) and (13), 

as the robot approaches the target, its distance ( )tr XXd − from the target 

position and ( )or XXd − from the obstacle position decreases at the same time, 

causing the repulsive force to increase instead when the gravitational force on 

the robot decreases. When the repulsive force significantly outweighs the 

gravitational force, the robot often drifts away from the target position due to 

the dominant repulsive influence, preventing it from reaching the target. 

Therefore, this can be reduced by modifying the potential field function. 

 

A* Algorithm 
A widely used heuristic search algorithm, the A* algorithm is designed for 

path planning in global and static environments [24]. Based on the Best-First-

Search algorithm and Dijkstra’s algorithm, the A* algorithm incorporates a 
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heuristic function to assess the cost of getting from the current node to the 

goal node, thus measuring the path's quality, and selecting a neighbouring node 

with the lowest estimated value as the best node to move to. The evaluation 

function of the A* algorithm can be expressed as: 

 

)()()( mmr XhXgXf +=  (16) 

 

where function 𝑓(𝑋𝑟) represents the total estimated cost of the path in three-

dimensional space, spanning from the initial node 𝑋𝑠 , passing through the 

intermediate node 𝑋𝑚, and reaching the target node 𝑋𝑡. while ℎ(𝑋𝑚) indicates 

the estimated cost of reaching the target node from the intermediate node. It’s 

important to choose an appropriate Heuristic Function ℎ(𝑋𝑚) to ensure that 

the A* algorithm provides the best path-finding effect. The costs of  𝑔(𝑋𝑚)  

and ℎ(𝑋𝑚) should be as close as possible to ensure optimal path searchability 

and efficiency. Widely utilized heuristic functions include Manhattan distance, 

Chebyshev distance, and Euclidean distance. In this research, the Euclidean 

distance is chosen as the heuristic function, which is expressed as: 
 

( ) ( ) ( )222
)( tmtmtmm zzyyxxXh −+−+−=  (17) 

  

The algorithm guides the search in the most promising direction, 

traverses fewer intermediate nodes, and makes it widely applicable for finding 

the shortest path in state space. However, the number of nodes traversed also 

rises, resulting in an abundance of nodes in the Openlist. This reduces the 

speed of the algorithm and consumes significant memory space. 

 

Modified artificial potential method 
The 6R industrial robot is a multi-degree-of-freedom tandem robot with 

strongly coupled motion characteristics and a three-dimensional workspace. 

When using the traditional APF to search for paths in Cartesian space, the path 

points must be converted to joint space using the inverse kinematics solution 

in order to determine the corresponding joint angles needed to drive the robot. 

Since the current optimal joint combination values have to be continuously 

screened out during the inverse solution calculation, this not only increases the 

computational complexity but also may result in singular solutions, leading to 

discontinuous joint angle values before and after, which cannot be applied to 

practical occasions. Therefore, to achieve path planning for 6R industrial 

robots, the Cartesian space coordinates of the potential field function are 

represented in terms of joint angles. This allows the potential energy function 

in joint space to be integrated into the gravitational potential energy function. 

The modified gravitational potential energy function is expressed as follows: 
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where 𝜃𝑟  is a six-dimensional array, denoted as 𝜃𝑟 = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, ]. 
𝑘𝑗 is the gravitational potential field gain coefficient in joint space, 𝜃𝑟(𝑖) and 

𝜃𝑡(𝑖) are the current angle and the target angle of the robot 𝑖𝑡ℎ(𝑖 = 1,2, … ,6) 

joint. 

As for the problem of target unreachability, a safe distance factor 

𝑑(𝑋𝑟 − 𝑋𝑡) between the robot and the target position is incorporated into the 

repulsive energy function, gradually reducing the distance to limit the impact 

of the repulsive potential energy on the robot. Within the safe range of the 

robot approaching the target, the influence of repulsion can be disregarded, 

enabling the robot to effectively reach the destination and overcome the 

unreachable state of the target. The modified repulsive potential energy 

function is formulated as: 
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where n represents the nth power of the separation between the robot and the 

target, which is typically set to 2=n . Intuitively, as an object approaches the 

target, although the repulsive field continues to increase, the rate of increase is 

relatively slower compared to the original repulsive field. This can somewhat 

alleviate the problem of excessive repulsion. As the robot nears the target, the 

increment of repulsion decreases, aiding the robot in adjusting its position and 

direction more accurately to avoid collisions and reach the target faster. 

Therefore, selecting appropriate correction coefficients of the potential field 

and distance power-law exponents can effectively balance the gravitational 

and repulsive forces of the robot, improving their motion efficiency and 

stability. 
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Integrating modified APF and A* algorithm 
To address the respective shortcomings of the APF and the A* algorithm, we 

propose combining the two algorithms for robot obstacle avoidance path 

planning. Figure 5 illustrates the implementation of this new combined 

algorithm. The combination algorithm addresses the issue of the robot 

becoming trapped in local minima and unable to escape during APF planning, 

while also mitigating the relatively low real-time performance of A*.  

 
Start

Parameter initialisation，
construct obstacle model

End

No

Yes

A* algorithm 

initialisation

Iterating over neighbouring 

nodes

No

No

Fall into a local minima?

Collision detection?

Target?

Yes

Yes

Calculate gravitation, repulsion, 

get the force of path point   

Search next path point by 

gradient descent method

No

virtual target node?

Collision detection?

Calculate the lowest estimated 

value of the nodes

Yes

Yes

No

 
 

Figure 5: Flow chart of the modified algorithm 

 

In the modified algorithm, the gradient descent method is employed to 

implement the modified APF method for comprehensive robot path planning. 

This method enables the robot to move against the gradient, starting from the 

initial point and continuing until the potential field's gradient vector reaches 

zero. To minimize the impact of inverse kinematics computations on the 

algorithm's efficiency, this study opts to perform path planning in joint space, 

planning the path point of each joint of the robot separately, and representing 

the path point with the joint angle. Through the constraint relationship between 

the adjacent links, the Cartesian space coordinates 𝑋𝑟 of the robot endpoint can 

be computed based on the joint angle of the 6R robot.  

Firstly, a modified APF algorithm is used for path planning. The search 

step is 𝜆, the next path point is 𝜃𝑖+1 = 𝜃𝑖 − 𝜆𝐹(𝜃𝑖). The variable 𝜃𝑖 represents 

a six-dimensional array, with each element corresponding to one of the six 

joint angles of the 6R industrial robot, 𝑖 denotes the step 𝑖. When it is judged 
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to enter the local minima, to set a virtual target point and control the robot to 

move towards it, which is denoted as the variable 𝜃𝑡𝑎𝑟. When the path planning 

method is changed into the A* algorithm, the robot’s present joint angles 𝜃𝑖𝑛𝑡 

(the local minimum point) is the initial searching node of A*; the neighbouring 

joint space (𝜃𝑖 − 𝜇, 𝜃𝑖, 𝜃𝑖 + 𝜇), where 𝜇 is the joint angle searching step; and 

the valuation function in step 𝑖 is defined as follows: 

 

The succeeding node at step (i+1) is generated based on the specified 

step length, and the node with the lowest value of f(𝜃𝑖+1) is then selected as 

the optimal joint angle 𝜃best. This iterative process ensures that the optimal 

joint angle is determined at each step, allowing the robot to seek the ideal route 

within the joint space based on heuristic information provided by this 

estimation function. 

 

 

Results and Discussion 
 

This section discusses the results of analyzing the workspace of the IRB120 

industrial robot to delineate its range of motion and reachable points. Based on 

this, the performance of an enhanced robot obstacle avoidance algorithm is 

also evaluated to optimize path planning to improve the robot's work efficiency 

and safety. 

 

Results analysis of robot workspace  
The workspace analysis of the ABB IRB120 robot was performed using the 

MATLAB Robotics Toolbox. Based on the angular range and kinematic 

equations of each joint, the Monte Carlo method was used to generate random 

values using the rand function to cover the predefined intervals of joint 

variables. The final results of the robot's workspace are presented in Figure 6. 

Table 2 lists the assignment of the random variable and the range of motion of 

the robot along each axis. The results show that the overall workspace of the 

IRB120 industrial robot is compactly distributed in a spherical shape, but the 

robot cannot reach its tail space due to joint restrictions. In addition, the Monte 

Carlo method achieved a very smooth spatial variation without any significant 

abrupt changes. Importantly, the workspace does not exceed the rotational 

range of each joint variable, which is very much in line with the requirements 

of practical applications.  
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Table 2: Results of IRB120 industrial robot workspace  

 

 

 
 

Figure 6: Workspace of IRB120 industrial robot 

 

Results analysis of enhanced robot path planning  
To evaluate the obstacle avoidance and path optimization performance of the 

modified algorithm, the following experiments were conducted in the Software 

MATLAB 2020b. The computer system is Windows 10 professional edition, 

the CPU parameter is Intel Core I5-8250U CPU @ 1.60 GHz 1.80 GHz, the 

graphics card parameter is Inter(R) UHD Graphics 620, and the memory is 16 

GB. Set the relevant parameters of the algorithm, the gravitational potential 

field correction coefficients are set as 𝑘𝑎 = 𝑘𝑗 = 20 , while the repulsive 

Parameters Value 
Random value 20000 

x-axis moving range [-0.65, 0.65] 

y-axis moving range [-0.65, 0.65] 

z-axis moving range [-0.18, 0.94] 
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potential field correction coefficient for each obstacle is defined as 𝑘𝑟(𝑖) = 25, 

the influence range of repulsion is set at 𝑑𝑜 = 0.15 m, the search step size is 

𝜆 = 2° and 𝜇 = 0.5°. The motion control parameters of the 6R industrial robot 

are detailed in Table 3. 

 

Table 3: Parameters of 6R industrial robot and obstacles (unit: m) 

 

 

The results of the experiment in MATLAB are depicted in Figures 7, 8, 

and 9, where the spheres represent the obstacle that encloses the bounding 

sphere, and the solid red line denotes the path from the start to the target. Figure 

7 illustrates the outcomes of classical APF path planning. It is observed that 

when two obstacles are far apart, the classical APF algorithm is effective in 

planning a path. However, when the obstacles are close in distance, Figure 8 

demonstrates that the robot becomes trapped in a local minima during classical 

APF planning, rendering it unable to progress towards the target, leading to 

path planning failure. In contrast, Figure 9 illustrates that the modified APF 

method successfully navigates out of the local minima and reaches the target.  

The performance outcomes of the algorithms are presented in Table 3. 

 

Table 4: The performance outcomes of the algorithms 

 

Parameters 
Classical APF in 

Experiment Ⅰ  

Classical APF in 

Experiment Ⅱ 

Modified APF & 

A* in Experiment 

Ⅱ 

Obstacle 

position 

Two obstacles far 

away 

Two obstacles 

nearby 

Two obstacles 

nearby 

Path length 1.363 m - 1.346 m 

Run time 1.563 s  - 0.895 s  

Iterations 356 500 (max) 323 

Simulation 

results 

Not trapped in local 

minima (Figure 7) 

Trapped in the local 

minima (Figure 8) 

Jump out of the 

local minima 

(Figure 9) 

 

Parameters Experiment Ⅰ Experiment Ⅱ 
The start position (0, 0.346, 0.46) (0,0.346, 0.46) 

The target position (0.09, 0.335, 0.297) (0.09, -0.335, 0.297) 

Obstacles position 
(0.35, 0.3, 0.35) 

(0.45, -0.3, 0.25) 

(0.38, 0.2, 4) 

(0.4, -0.2, 4) 

Obstacle radius 0.1, 0.13 
 

0.1, 0.13 
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Figure 7: Not trapped in local minima in classical APF method 

 

 
 

Figure 8: Trapped in local minima in classical APF method 

 

 
 

Figure 9:  Jump out of local minima in modified APF and A* algorithm 
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Additionally, ten experiments were conducted in MATLAB utilizing 

both the classical APF method and the modified algorithm to investigate the 

issue of inaccessible targets when obstacles are located close to the target. The 

experimental parameters were set up to ensure that the robot would steer clear 

of specified obstacles within the workspace. Under normal circumstances, all 

ten experiments were successfully planned. The error between the planned 

target and the given target obtained by the function is: 

 

)( tti XXd −=  (24) 

 

where 𝑋𝑡𝑖  is the target planned by the algorithm, 𝑋𝑡  is the given target. 

d(𝑋𝑡𝑖 − 𝑋𝑡) is the distance between the planned target and the given target. 

The errors obtained by the two algorithms are shown in Table 5.  

Using the errors collected from the ten experiments, the average error 

of the algorithm can be computed as follows: 
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Table 5: Error of the target obtained based on the two algorithms (unit: m) 

 

The calculations indicate that the mean error of the enhanced algorithm 

is 0.0121 m, while that of the classical algorithm is 0.0247 m. This 

demonstrates that the improved algorithm achieves greater accuracy in 

reaching the target compared to the classical APF method. 

 

 

Conclusion 
 

In summary, we have tailored an enhanced obstacle avoidance path planning 

algorithm for the 6R industrial robot. By integrating APF and A* algorithms, 

our approach optimizes global and local path planning, thus saving robot 

motion time, reducing mechanical wear, and ensuring safe robot operation in 

obstacle-intensive environments. With accurate Denavit-Hartenberg 

modelling and simplified collision detection methods, our algorithm achieves 

Algorithms 
Error    

1  2  3  4  5  6  7  8  9  10  a  

Classical APF 
0.02

5 

0.02

3 

0.02

5 

0.02

5 

0.02

6 

0.02

4 

0.02

5 

0.02

3 

0.02

6 

0.0

25 

0.024

7 

Modified APF 

and A* 

0.01

3 

0.01

2 

0.01

3 

0.01

1 

0.01

1 

0.01

2 

0.01

0 

0.01

2 

0.01

4 

0.0

13 

0.012

1 
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precise motion control and efficient obstacle avoidance. Building on this 

foundation, the integration of digital twin technology can be further pursued. 

By establishing a digital twin system, virtual testing and optimization studies 

on the robot's motion performance can be conducted to enhance planning 

capabilities and improve path quality, thereby laying the groundwork for the 

future development of practical applications. In addition, overcoming the 

limitations of the collision detection model and exploring the applicability of 

the algorithm in complex working environments require further research. 
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