SCALED CONJUGATE GRADIENT USING STRONG WOLFE LINE SEARCH FOR PORTFOLIO SELECTION

NURFATIHAH BINTI ANIZAN

Thesis submitted in fulfilment of the requirement for the degree of Bachelor of Science (Hons.) Mathematical Modelling and Analytics

College of Computing, Informatics and Mathematics Universiti Teknologi MARA

July 2024

ABSTRACT

Optimization problems always arise in daily life and in fields such as economics, management science, and engineering, where design and performance optimization are common objectives. Industrial applications also focus on maximizing efficiency and minimizing costs. This research explores the application of the Scaled Conjugate Gradient (SCG) method, utilizing a strong Wolfe line search, in the context of portfolio selection. The study systematically compares four SCG methods which are RMIL, AMRI, NMR, and LAMR, to identify the most effective approach. These methods are tested using 20 test functions with different variables also with four initial points have been for each variable. In order to find the best method, the iteration number (NOI) and CPU time are computed. Numerically, SLAMR outperforms others by solving all the test functions, followed by SAMRI (99.06%), SRMIL (91.25%), and SNMR (81.56%). LAMR is the most effective algorithm among those compared, balancing quick problem-solving and solving a larger number of problems. Based on the results, the Scaled LAMR method is the most robust method among others as it can solve 100% of the test functions. Then, the scaled LAMR method is applied in portfolio selection problems, to determine the more suitable investment between CIMB Bank and Maybank. The results showed that CIMB Bank has a lower risk than Maybank, making it the better investment. This study demonstrates the SLAMR method's effectiveness in solving portfolio selection problems.

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful. All praise is due to Allah, the Cherisher and Sustainer of the world. First and foremost, I would like to express my heartfelt gratitude and sincere thanks to my supervisor, Dr. Norhaslinda binti Zull Pakkal who amply provided guidance and encouragement in this thesis. My sincere appreciation also goes to the faculty of Universiti Teknologi MARA for giving me this opportunity to further my studies. Not forgetting all my friends who have helped me in many ways, thank you. Last but not least, I reminisce fondly about the constant encouragement and continuing support extended to me by my family.

TABLE OF CONTENT

	Page
DECLA	RATION BY THE SUPERVISORi
DECLA	RATION BY THE CANDIDATEii
ABSTRA	ACTiii
ACKNO	WLEDGEMENTiv
TABLE	OF CONTENTv
LIST OF	TABLES viii
LIST OF	FIGURESix
INTROE	DUCTION
1.1	Introduction1
1.2	Research Background 1
1.3	Problem Statement
1.4	Objectives4
1.5	Significance of Study
1.6	Scope of the Study5
1.7	Project Benefits 6
1.8	Organization of the Project
LITERA	TURE REVIEW9
2.1	Introduction 9
2.2	Literature Review9

2	.2.1	Optimization Problem	9
2	.2.3	Conjugate Gradient Method	.12
2	.2.4	Scaled Conjugate Gradient	.13
2	.2.5	Conjugate Gradient Coefficients	14
2	.2.6	Portfolio Selection	.15
2	3	Definition of Terms and Concepts	16
RE:	SEAR	ACH METHODOLOGY	18
3	.1	Introduction	18
3	.2	Research Step	18
3	.3	Conclusion	23
IMI	PLEM	IENTATION	24
4	.1	Introduction	.24
4	.2	Numerical Test	24
4	.3	Portfolio Selection	30
4	.4	Conclusion	32
RE	SULT	AND DISCUSSIONS	.33
5	.1	Introduction	.33
5	.2	Result	.33
	5.2.	1 Numerical Result	.33
	5.2.2	2 Application	36
5	3	Conclusion	<i>4</i> ∩