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ABSTRACT 

 

Thermoelectric generators (TEGs) offer the potential for converting waste 

heat into electricity, but their efficiency, particularly at low temperatures, 

remains inadequate. Plate-Fin Heat Exchangers (PFHEs) in TEG systems are 

not fully optimized, resulting in limited efficiency and applicability. The low 

conversion efficiency of TEGs means only a small fraction of waste heat is 

utilized, posing challenges to their long-term viability. While Genetic 

Algorithms (GAs) have shown promise in optimizing heat exchanger designs, 

advanced methods like Non-dominated Sorting Genetic Algorithm II (NSGA-

II) have yet to be fully applied for PFHE TEG design. This study addresses 

these challenges by using NSGA-II, combined with a semi-empirical model, to 

optimize PFHE design in TEG systems. The optimization focuses on refining 

fin design parameters such as number, width, and height while adhering to 
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constraints on fin area and pressure drop. The optimized design achieved a 

3.94% increase in output power and a 1.72% increase in efficiency at 373.15 

K, with conversion efficiency rising by 154.74% and maximum output power 

by 549.64% at 428.15 K. In conclusion, this research bridges the gap by 

applying NSGA-II to enhance PFHE design in TEGs, significantly improving 

performance and sustainability. Future work will explore alternative models 

and further optimization to achieve even higher efficiencies. 

 

Keywords: Thermoelectric Generator; Artificial Intelligence; System 

Optimization; Plate-Fin Heat Exchanger; Waste Heat Recovery 

 

 

Introduction 
 

Energy efficiency and Waste Heat Recovery (WHR) are vital in today’s 

industrial processes due to the demand for sustainable energy. Waste heat, a 

byproduct of these processes, is a largely untapped resource that, if recovered, 

can reduce greenhouse gas emissions and improve energy efficiency, aligning 

with global sustainability goals. Plate-Fin Heat Exchangers (PFHEs) and 

Thermoelectric Generators (TEGs) are key technologies in WHR. PFHEs are 

valued for their compact design and high performance, while TEGs convert 

waste heat directly into electricity via the Seebeck effect. By leveraging 

Artificial Intelligence (AI), the efficiency of PFHEs and TEGs can be 

significantly enhanced, positioning TEGs as a viable solution for boosting 

energy recovery in industrial settings. 

According to Khan et al. [1], PFHEs play an essential role in industrial 

waste heat recovery owing to their compact construction and excellent 

efficiency and are extensively used in process industries such as 

petrochemical, chemical, and many more. However, despite their 

effectiveness, challenges such as indirect power generation and costly 

installation and maintenance requirements are the key issues as stated by Miao 

et al. [2]. Thus, installing TEGs would be a feasible option, recovering more 

than 60% of energy loss as demonstrated by Nourdanesh and Kantzas [3]. 

Garud et al. [4] highlighted that TEGs are Seebeck effect-powered devices that 

directly transform waste heat into electricity without the need of moving 

components, lowering dependency on fossil fuels and associated Green House 

Gasses (GHG) emissions. 

Genetic Algorithms (GAs), which were inspired by Charles Darwin's 

theory of evolution [5], are known as a powerful optimization approach that 

initially developed in the 1950s. As a result, the bio-inspired tool has grown to 

tackle problems in a variety of disciplines, including optimization and machine 

learning presented by Katoch et al. [6]. With that being said, GA excels in 

automated optimization searches, providing a global tool for heuristic search 

capabilities. GAs are a popular algorithm that is known for their simplicity and 
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versatility in solving a wide range of issues, as well as their efficacy in 

identifying robust solutions. 

According to Song et al. [7] and Meng et al. [8], recent advancements 

in Multi-Objective Optimization (MOO) have significantly enhanced the 

evaluation and improvement of heat exchanger performance, utilizing various 

thermodynamic and economic indices. The Non-dominated Sorting Genetic 

Algorithm II (NSGA-II), an evolutionary algorithm based on GA, is 

particularly adept at managing complex, multi-objective optimization tasks. It 

is crucial for optimising PFHE in TEGs, where it balances conflicting 

objectives, such as maximizing efficiency and power output while minimizing 

pressure drops. Unlike its predecessor, the GA, NSGA-II introduces a fast and 

elitist sorting approach that categorizes solutions into different fronts based on 

dominance.  

A multi-objective GA excels in addressing these challenges, offering 

distinct advantages over traditional mathematical programming as highlighted 

by Damavandi et al. [9]. The algorithm's ability to manage multiple conflicting 

objectives simultaneously is invaluable, as it allows for the identification of 

designs that achieve the best balance between competing factors, as argued by 

Hajabdollahi et al. [10]. This capability is vital in industrial, aerospace [11] 

and automotive [12] applications, where seamlessly integrating technical 

performance with economic and operational constraints is essential. 

Furthermore, the integration of semi-empirical models with NSGA-II 

marks a significant advancement in enhancing TEG performance. According 

to Lan et al. [13], these models blend robust theoretical principles with 

empirical data, considerably improving the accuracy of thermal behaviour 

predictions for PFHEs. Adjustments to critical design parameters, informed by 

empirical observations such as temperature difference values and heat transfer 

rates, ensure that the optimization outcomes are both practically feasible and 

theoretically valid. 

This study leverages AI, specifically NSGA-II, to enhance the 

efficiency of PFHEs in TEGs for low-temperature WHR, with a particular 

focus on using wastewater as the heat source. The aim is to reduce energy 

consumption, lower GHG emissions, and promote sustainable energy 

practices. Additionally, it seeks to cut industrial operational costs and align 

with broader sustainability goals, contributing to several UN Sustainable 

Development Goals (SDGs), including SDG 7 (Affordable and Clean Energy), 

SDG 9 (Industry, Innovation, and Infrastructure), SDG 11 (Sustainable Cities 

and Communities), SDG 12 (Responsible Consumption and Production), SDG 

13 (Climate Action), and SDG 15 (Life on Land). 

The research also underscores the substantial untapped potential in 

recovering energy from these processes, which have considerable 

environmental impacts. Traditional combustion processes, which consume 

over 80% of energy, generate significant amounts of waste heat, making its 

recovery essential for sustainable energy production and reducing GHG 
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emissions, as noted by Zhu et al. [14]. Fossil fuel-based power generation 

typically produces about 60% of its energy as waste heat, yet only around 7% 

is currently recovered, as highlighted by Chen et al. [15], and Miao et al. [2]. 

By recovering low-temperature waste heat, especially from hot wastewater, 

this study not only conserves water but also promotes sustainable management 

practices that further reduce GHG emissions. 

In conclusion, this project combines technological innovation with 

social effects, economic feasibility, and environmental awareness to tackle the 

critical challenges of enhancing energy efficiency and low-temperature WHR 

in industrial operations. 

 

 

Methodology 
 

Semi-empirical model 
This research builds on a semi-empirical model that replicates a physical 

system from a prior study by Chen et al. [15] to evaluate a low-temperature 

waste heat recovery (WHR) system as depicted in Figure 1. 

 

 
 

Figure 1: TEG PFHE model structure [15] 

 

The system comprises a waste heat channel and a cooling channel, each 

measuring 36 cm × 20 cm × 6 cm, and includes several plate fins and 

thermoelectric generators (TEGs). Positioned between the waste and cooling 

channels, the TEGs use the temperature gradient across thermoelectric 

materials to convert thermal energy to electrical energy via the Seebeck effect. 

The focus of this study is to optimize the system by modifying the number and 

dimensions of the fins and comparing these changes to a previous study that 

used a Reynolds number of 1000. This study also explores the effects of 

altering the configurations and number of TEGs and the dimensions of the 
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channels such as the width and length on the system’s efficiency and maximum 

power output.  

The primary sources of low-temperature waste heat are air or water, 

which are common cooling mediums in most heat exchange systems as stated 

by Zou et al. [16]. Consequently, water is used exclusively as the working fluid 

in these simulations. Previous findings from He et al. [17] indicated that TEGs 

in a counter-flow configuration produced 15% more power than those in a co-

flow setup, concluding the use of counter-flow in this study. The water 

properties such as density, viscosity, thermal conductivity, and specific heat 

are presented in Table 1. 

The study employs TEGs also known as Thermoelectric Modules 

(TEMs) that are commercial-sized rectangular modules (4 cm × 4 cm × 0.375 

cm), similar to TEC1-12706 conducted by Chen et al. [18], consisting of 127 

pairs of p-type and n-type elements made of Bi2Te3, with detailed properties 

listed in Table 1. The power output from the TEGs is derived from the 

temperature difference between the hot and cold sides of the TEM. To align 

with practical scenarios in low-temperature waste heat recovery, three TEGs 

are used, replicating the configurations from previous studies for equal 

comparison.  

 

Table 1: Properties of the TEG material and water [15] 

 
Parameters Unit Value 

Parameters of TEM   

Seebeck coefficient V⋅K-1 Sp = -Sn = 226.8 × 10-6 

Thermal conductivity W⋅m-1⋅K-1 kp = kn = 1.52 

Resistivity Ω⋅m ρp = ρn = 1.447 × 10-5 

Parameters of water   

Density kg⋅m-3 998.2 

Specific heat at constant pressure J⋅kg-1⋅K-1 4182 

Thermal conductivity W⋅m-1⋅K-1 0.6 

Viscosity kg⋅m-1⋅s-1 0.001003 

 

To boost the efficiency of the TEGs, aluminium plate-fins are 

integrated into the waste heat channel. Based on prior studies, each fin is sized 

at 3 cm × 0.2 cm × 4 cm (length × width × height). Moreover, the impact of 

fin geometry on thermoelectric performance revealed that increasing fin length 

had a negligible effect on performance enhancement at low flow rates as 

proven by Jang et al. [19], therefore, the fin length is fixed at 3 cm for the 

optimization process. Thus, this study only further optimizes the width, height, 

and number of fins, whereas the previous study has found that the optimal fin 

count for achieving the highest conversion efficiency and maximum output 

power is 27. Moreover, this study examines the impact of varying the number 

of TEGs and the dimensions of the channels specifically the width and length 
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alongside modifications to the number and dimensions of fins, on the system’s 

conversion efficiency and maximum power output. 

The physical phenomenon is assumed to be in a steady state. The 

Reynolds number (Re) of a flow in the channel is defined as: 

 

𝑅𝑒 =
𝜌𝑉𝐷

𝜇
 

(1) 

 

where ρ, V, D, and μ represent the fluid density, velocity, hydraulic diameter, 

and dynamic viscosity, respectively. In this study, Re of 1000 are considered, 

indicating that the flows are laminar and incompressible. Thermal radiation 

and stress between materials are neglected. The hydraulic diameter is 

calculated using: 

 

𝐷𝐻 = 4 (
𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑤𝑒𝑡𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
) 

(2) 

 

Since the hot channel includes plate-fins, the effective flow area is calculated 

by subtracting the plate-fin area from the hot channel area, and the effective 

wetted perimeter is found by adding the perimeters of the hot channel and 

plate-fins. In contrast, the cold channel, without plate-fins, has its hydraulic 

diameter calculated directly by: 

 

𝐷𝐶 =  
2(𝑊𝑐 ×  𝐻𝑐)

𝑊𝑐 + 𝐻𝑐
 

(3) 

 

where Wc and Hc are the width and height of the cold channel. In order to 

calculate the Nusselt Number (Nu), two criteria were satisfied such as Reynold 

Numbers, Re < 2300 and Prandtl Number, Pr > 0.7. Thus, the hydraulic 

diameter, D of Equation (2) and Equation (3), and the length of channels, L are 

used for this purpose. Therefore, the Nu correlation for laminar flow used for 

each channel, as defined by Gnielinski [20] is given as: 

 

𝑁𝑢𝑙𝑎𝑚 = {𝑁𝑢𝑚,𝑞,1 
3 + 0.63 + (𝑁𝑢𝑚,𝑞,2 − 0.6)3 + 𝑁𝑢𝑚,𝑞,3 

3  }
1
3 (4) 

  

𝑁𝑢𝑚,𝑞,1 
3 = 4.354   (5) 

  

𝑁𝑢𝑚,𝑞,2 = 1.953√𝑅𝑒 𝑃𝑟 (
𝐷

𝐿
)

3

 (6) 
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𝑁𝑢𝑚,𝑞,3 = 0.924 √𝑃𝑟
3

 √𝑅𝑒 (
𝐷

𝐿
) (7) 

 

Upon determining the Nu from Equation (4), along with the hydraulic 

diameters of the channels and the thermal conductivity of water, the heat 

transfer coefficient is established as: 

 

ℎ =
𝑁𝑢 𝐾

𝐷
 (8) 

 

The mass flow rate is given by: 

 

ṁ = 𝜌 𝑉 𝐴 (9) 

 

where A is defined as the effective flow area derived from both the hot and 

cold channels. Meanwhile, by using the mass flow rate from Equation (9) and 

the specific heat at constant pressure, Cp, the heat capacity rates are defined 

as: 

 

C = ṁ Cp (10) 

 

The convective thermal resistance of the channels is then defined as: 

 

𝑅𝑐𝑜𝑛𝑣 =
1

ℎ ×  𝐴
 

(11) 

 

Meanwhile, the thermal conduction resistance of the TEG is given by: 

 

𝑅𝑇𝐸𝐺 =
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑤)

𝐾 × 𝐴
  

(12) 

 

The overall heat transfer coefficient, U is given by: 

 

𝑈 =
1

𝑇𝑜𝑡𝑎𝑙 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

 

(13) 

where the total overall thermal resistance is obtained by summing up the values 

obtained from Equation (11) and Equation (12). Thus, the Number of Transfer 

Unit, NTU is given as: 

 

𝑁𝑇𝑈 =
𝑈 × 𝐴𝑡𝑜𝑡𝑎𝑙

𝐶𝑚𝑖𝑛
 

(14) 
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The total area includes the total area of TEG used and the surface area 

of hot and cold channels, meanwhile, the Cmin is obtained from Equation (10). 

The effectiveness, e for counterflow is expressed as: 

 

𝑒 =
(1 −  𝑒𝑥𝑝(−𝑁𝑇𝑈 (1 − 𝐶))

1 − 𝐶 𝑒𝑥𝑝 (−𝑁𝑇𝑈 (1 − 𝐶))
 

(15) 

 

The maximum heat transfer rate, Qmax, and actual heat transfer rate, Qactual are 

given below: 

 

𝑄𝑚𝑎𝑥 = 𝐶𝑚𝑖𝑛 ( 𝑇ℎ𝑖𝑛
− 𝑇𝐶𝑖𝑛

) (16) 

  

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑒 .  𝑄𝑚𝑎𝑥 (17) 

 

where 𝑇ℎ𝑖𝑛
 and 𝑇𝐶𝑖𝑛

 represent the inlet temperatures of the hot and cold 

channels, respectively. The temperature difference across the TEG is obtained 

by: 

 

𝛥𝑇𝑇𝐸𝐺 = (𝑇ℎ𝑜𝑢𝑡
− 𝑇𝐶𝑜𝑢𝑡

) (18) 

 

Meanwhile, the internal resistance of the TEG can be found using: 

 

𝑅𝑖𝑛𝑡 = =
𝑝 𝐻

𝐴𝑇𝐸𝐺
 

(19) 

 

where ρ represents the electrical resistivity of the TEG, 𝐻 represents the height 

or thickness of the TEG and ATEG is the cross-sectional area of the TEG. This 

study assumes that thermoelectric materials have constant properties and 

ignores the Thomson effect. The output power, P, and maximum output power 

Pmax produced by the TEG are obtained by: 

 

P = (
𝑆 𝛥𝑇𝑇𝐸𝐺

(𝑅𝑖𝑛𝑡 + 𝑅𝑒𝑥𝑡) 
)

2

x 𝑅𝑒𝑥𝑡 
(20) 

 

Pmax =
𝑆2𝛥𝑇𝑇𝐸𝐺

2

(4 𝑅𝑖𝑛𝑡) 
 

(21) 

 

where S, Rint, and Rext are the Seebeck coefficient of the TEG (S = Sp - Sn), the 

TEG internal resistance, and the external load resistance, respectively. This 

study considered impedance matching to track the maximum output power, 

defined by: 
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𝑅𝑖𝑛𝑡 = 𝑅𝑒𝑥𝑡 (22) 

 

Impedance matching means that the internal resistance is equal to the 

external resistance. The maximum output power is obtained from Equation 

(21) under the impedance matching. In order to find the total maximum output 

power, it is required to multiply with the total number of TEGs used such as: 

 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑚𝑎𝑥 = 𝑁𝑜. 𝑜𝑓 𝑇𝐸𝐺 ×  𝑃𝑚𝑎𝑥 (23) 

 

The maximum conversion efficiency of the TEG can be calculated by: 

 

n =
𝑃𝑚𝑎𝑥

𝑄𝑎𝑐𝑡𝑢𝑎𝑙
 × 100 

(24) 

 

The pressure drop of the hot side is calculated using: 

 

𝛥𝑃 = 𝑓 ×  
𝐿

𝐷
×  

𝜌 𝑉 2

2
 

(25) 

 

The variables f, L, D, ρ, and V represent the friction factor, length of the hot 

channel, hydraulic diameter of the hot side, density of water, and velocity on 

the hot side, respectively. Moreover, the Absolute Percentage Error (APE), 

followed by the Mean Absolute Percentage Error (MAPE) formula, used to 

quantify the accuracy of the semi-empirical model, are given as follows: 

 

𝐴𝑃𝐸  = |
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
|  × 100 

(26) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟

𝑛

𝑖=1

 
 

(27) 

 

where n is the number of data points. Finally, a weighted global criterion 

method was applied to determine the optimal design. The utility function was 

adjusted to accommodate the maximization of both objectives, as defined by: 

 

𝑂𝑐 = {∑ 𝑤𝑖

𝑘

𝑖=1

 [𝐹𝑜 − 𝐹𝑖(𝑋)]𝑝}

1
𝑝

 

 

(28) 

 

where 𝑂c is the global criterion, 𝑤i a vector of weights for each objective 

function, 𝑝 is a coefficient to emphasize the minimization of one of the 
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objectives, F represents the Pareto optimal systems and 𝐹o is the utopia point, 

which defined as:                                             

  

𝐹𝑜 =  [max(𝑝_𝑚𝑎𝑥), max( 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦_max )] (29) 

 

Non-dominated sorting genetic algorithm II 
In this study, the NSGA-II algorithm is utilized for the multi-objective 

optimization of the TEG PFHE system. The Pareto front was generated using 

the NSGA-II evolutionary algorithm, which relies on biologically inspired 

operators such as mutation, crossover, and selection to determine the optimal 

solution. The entire optimization was conducted using Python 3.12.0 with the 

Pymoo package [21]. The flowchart outlines several processes aimed at 

maximizing both the thermoelectric power output and conversion efficiency of 

the TEG, as shown in Figure 2. 

 

        
 

Figure 2: Flowchart for NSGA-II algorithm 
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Initially, the problem is defined with input parameters, two objective 

functions, and three variables representing the maximum output power and 

maximum efficiency of the TEG. The three design parameters include the 

number of fins (ranging from 25 to 65), fin width (0.1 cm to 0.5 cm), and fin 

height (2 cm to 5.5 cm), as depicted in Table 3. NSGA-II employs float random 

sampling to generate 300 new populations or solutions for each of the design 

parameters based on their maximum and minimum values during the 

optimization process. A semi-empirical model is then implemented to solve 

Equations (1) to (25) within the TEG PFHE system. For each iteration, a 

random population is created, and fitness scores are assessed. Individuals with 

the highest fitness scores are given preference for breeding. 

Breeding is performed using Simulated Binary Crossover (SBX), where 

two offspring are produced from two parents. Two individuals are selected 

using the binary tournament mating selection, where each individual is 

compared first by rank and then by crowding distance as highlighted by Deb 

et al. [22]. After selection, the crossover sites are exchanged, creating new 

individuals or offspring. Genes are randomly mutated to introduce diversity 

into the population, using a method called polynomial mutation. Table 2 

represents the settings used to operate the algorithm. 

Fitness scores are then reassessed, and the fittest individuals proceed to 

the next generation through fast non-dominated sorting, for a total of 300 

generations or iterations. The algorithm determines whether to continue based 

on the maximum number of generations (300) or convergence tolerance 

thresholds as can be seen in Table 2. If the stopping criteria are met, the process 

proceeds to output the Pareto front. This forms an evolution loop that includes 

selection, crossover, mutation, fitness evaluation, and reselection again.  

For each generation, duplicates are eliminated to promote diversity. The 

simulated binary crossover specifies a crossover probability and a distribution 

index that determines how close the offspring solutions are to the parent 

solutions. The fitness of the new population is then evaluated, and the binary 

tournament mating selection is used again to select the fittest individuals for 

the next generation, ensuring the survival of the fittest. 

The PFHE designs are refined by repeating the steps of checking 

stopping criteria, performing genetic operations, and updating the generation 

counter until the stopping criteria are met. Once the optimization process is 

complete, the optimized designs are compared with existing solutions. The 

Pareto front displays a set of optimal solutions that illustrate the trade-offs 

between multiple objectives. The use of two objective functions in NSGA-II 

results in a Pareto front where each performance factor is optimized to its 

maximum value. 
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Table 2: Settings of the algorithm 

 
Parameter Value  

Population size 300  

Number of offsprings 300  

Selection function Binary tournament mating  

Crossover fraction 0.8  

Crossover function Simulated binary crossover  

Mutation fraction 0.1  

Mutation function Polynomial mutation  

Stopping criteria Maximum generation 300 

 Tolerance for design variables 1×10-8 

 Constraint violation tolerance 1×10-6 

 Tolerance for objective functions 1×10-6 

 

Table 3: Parameters used for the algorithm 

 

 Parameter Unit Value 

Input   

Reynolds Number, Re  1000 

Hot inlet temperature, Thin K 353.15 

Cold inlet temperature, Tcin K 303.15 

Cold channel cm 36 x 20 x 6 

Hot channel cm 36 x 20 x 6 

 Length aluminium plate fins cm 3 

 Thermoelectric generator cm 4 x 4 x 0.375 

 Variable range boundaries   

 Plate-fin number  25.0 ≤ x ≤ 65.0 

 Fin width cm 0.1 ≤ x ≤ 0.5 

 Fin height cm 2.0 ≤ x ≤ 5.5 

 Constraints   

 Plate-fin area space cm2 x ≤ 60 

 Pressure drop Pa x ≤ 1 

 

 

Results and Discussion 

 

Model validation 

In numerical investigations, it is essential to ensure that the model and its 

settings are appropriately aligned with the problem to achieve reliable and 

accurate results. To validate the accuracy of the semi-empirical model before 

integrating it into the NSGA-II algorithm, the results were compared with the 

experimental data [15]. The semi-empirical model comprises Equations (1) to 
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(24), which are utilized to solve the total maximum output power and 

maximum conversion efficiency of the TEG PFHE system.  

Based on Figure 3, the MAPE for the total maximum output power and 

maximum conversion efficiency based on Equations (26) to (27), is 5.37% and 

1.29%, respectively. These values are both below 6%, effectively achieving 

numerical validation which is supported by Chen et al. [15], and Wang et al. 

[23]. This demonstrates that the modelling approach aligns with the problem, 

delivering accurate and reliable results. Consequently, this validated model 

will be used for the AI algorithm. 

 

  
(a) (b) 

 

Figure 3: Comparisons of semi-empirical model and experimental data  

(a) total maximum output power and (b) maximum conversion efficiency 

 

Optimization results 

The primary aim is to enhance the maximum output power and conversion 

efficiency of the TEGs of the PFHE. Based on the previous research [15], the 

results achieved a total maximum output power of 0.411 W, a maximum output 

power of 0.137 W, and a maximum conversion efficiency of 0.95% at 373.15 

K using 27 fins, with a fin width and height of 0.002 m and 0.04 m, 

respectively. The Pareto front based in Figure 4 represents the set of optimal 

solutions generated by the NSGA-II.  

The two objectives, maximizing output power and conversion 

efficiency, show a clear trade-off, where increasing one often reduces the other 

as shown in Figure 4. This trade-off is crucial for decision-makers, as it 

visually represents possible solutions, helping them choose the best 

configuration based on their needs. The spread and shape of the Pareto front 

demonstrate the NSGA-II algorithm’s effectiveness in capturing a wide range 

of optimal solutions. With the right balance of design parameters, significant 

improvements in both power output and efficiency are achievable compared to 

baseline configurations. 

A Weighted Global Criterion Method, which was used by Peixer et al. 

[24] and Marler et al. [25] was utilized to select the final design, using 
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Equations (28) to (29). The objective functions were normalized to 

dimensionless form, ensuring comparability across different units. The 

weights assigned to p_max (maximum output power) and efficiency_max 

(maximum conversion efficiency) were set to 0.5 each, indicating an equal 

emphasis on both objectives, and 𝑝 was set equal to unity.  

Thus, after optimization, the maximum conversion efficiency increased 

to 0.9663%, and the maximum output power rose to 0.1424 W. The optimal 

design identified included 64 fins, each with a width of 0.001 meters and a 

height of 0.0304 meters. This configuration was the most effective within the 

given constraints, achieving a fin area of 0.00195 m² and a pressure drop on 

the hot side of 0.94 Pa, all within the limits specified in Table 3, ensuring 

feasibility within the model.  

 

 
 

Figure 4: Resulting Pareto front of the MOO problem 

 

Figure 5(a) shows how the algorithm converges to meet problem 

constraints over successive generations, ensuring solutions are both optimal 

and feasible. Figure 5(b) displays the hypervolume indicator, which measures 

the objective space covered by the Pareto front. An increasing hypervolume 

indicates effective exploration and improvement of solutions, demonstrating 

the robustness of the NSGA-II algorithm. After performing the main 

optimization, different scenarios were explored.  

Figure 6 illustrates the effect of varying hot inlet temperatures on the 

balance between maximum output power and conversion efficiency during the 

MOO. Higher inlet temperatures shift the Pareto front towards increased power 

and efficiency, highlighting that elevated temperatures can significantly 

improve TEG system performance. This underscores the importance of 

temperature management in optimizing TEG systems and provides insights 

into the PFHE's thermal behaviour under different conditions. 
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(a) (b) 

 

Figure 5: Convergence analysis for (a) constraint satisfaction and  

(b) hypervolume of the algorithm 

  

 
 

Figure 6: Pareto front with different hot inlet temperatures 

 

Figure 7 provides a detailed analysis of Thermoelectric Generator 

(TEG) configurations, focusing on the trade-offs between maximum output 

power, total power, and conversion efficiency. In Figure 7(a), series 

configurations connect TEGs end-to-end, enhancing voltage and efficiency but 

introducing higher resistance, which limits power output. Parallel 

configurations, connecting TEGs side-by-side, reduce resistance and increase 

power output, though they may be less efficient due to suboptimal use of the 

thermal gradient. Figure 7(b) explores the impact of channel width. In parallel 

setups, narrower channels with fewer TEGs improve power and efficiency by 

optimizing heat transfer and reducing resistance. Wider channels with more 

TEGs decrease performance due to increased resistance. For series 

configurations, wider channels enhance power by distributing heat better but 
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reduce efficiency due to cumulative resistance. Narrower channels improve 

efficiency but limit heat absorption, reducing power output. Figure 7(c) 

discusses channel length. Shorter channels reduce pressure drop and improve 

efficiency but lower power output. Longer channels increase power output but 

also raise pressure drop, which can reduce efficiency. Overall, balancing TEG 

configuration, channel width, and length is crucial for optimizing both power 

and efficiency. 

 

 
  (a) 

 

     
 (b)  
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                                                  (c) 

 

Figure 7: Pareto front analysis using a different (a) number of TEGs and 

configurations alongside different (b) width and (c) length of channels 

 

 

Conclusions 

 

This study utilized the NSGA-II algorithm to optimize PFHEs in TEGs, 

achieving a 3.94% increase in maximum output power (from 0.137 W to 

0.1424 W) and a 1.72% increase in efficiency (from 0.95% to 0.9663%). The 

optimized design, featuring 64 fins, also increased the total maximum output 

power for three TEGs from 0.411 W to 0.4272 W, a 3.94% improvement. At 

the highest tested temperature of 428.15 K, the system reached a maximum 

conversion efficiency of 2.42% and a maximum output power of 0.89 W, 

representing increases of 154.74% and 549.64%, respectively. Convergence 

analysis and hypervolume indicators validated the robustness of the NSGA-II 

algorithm. These findings underscore the need to balance design parameters 

for optimal performance and demonstrate the effectiveness of AI-driven 

optimization in enhancing waste heat recovery. The optimization process was 

completed in just 14 minutes, efficiently handling 7,500 iterations, 

and significantly reducing computational time and resources. 
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