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Abstract— Lithium-ion (Li-ion) batteries have gained considerable 

attention in the Electric Vehicle (EV) industry due to their high 

energy density, better lifespan, and higher nominal voltage. 

However, accurately estimating the State of Charge (SOC) and 

State of Health (SOH) for Li-ion batteries remains challenging due 

to its aging and nonlinear behaviour. This paper explores Battery 

Management System (BMS) models potential incorporating 

Artificial Intelligence (AI) estimation techniques, particularly 

Deep Learning (DL), to improve SOC and SOH model estimations. 

This research paper summarized and analyzed current BMS 

approaches by identify the potential gaps in existing research focus 

and propose another technique for further exploration in the EV 

Li-ion battery. Currently, there is a research gap in the existing 

studies, especially in the application of DL for SOC and SOH 

estimation. and underscores the need for more comprehensive 

exploration and refinement of DL methods. Future research 

should address these gaps to advance the integration of DL into 

BMS to ensure robust and reliable SOC and SOH estimations. 

Because of its features and capacity to improve SOC and SOH 

estimating health models accurately, deep learning has a lot of 

potential for studying SOC & SOH in BMS. As a result, there is 

opportunity to investigate the DL technique further in order to 

thoroughly and clearly examine the correctness of SOC & SOH 

model estimations in BMS. 

 
Index Terms— Battery management system (BMS), lithium-ion, 

artificial intelligence, state of charge (SOC), state of health (SOH) 

I. INTRODUCTION 

Due to rising concerns about environmental pollution and 

global warming, modern society has made sustainability one of 

its top priorities. To ease these worries and move forward to a 

sustainable future, global energy strategies emphasise the 

switch from fossil fuels to renewable energy (RE) sources. The 

ability of RE to be efficiently used to manage energy 

consumption and cut carbon emissions makes it essential in the 

commercial, industrial, and residential sectors [1]. Major 

contributors to carbon emissions include electricity and heat 

production, transport, manufacturing and construction, as well 

as agriculture [2]. The transportation sector is among the 

leading causes of environmental pollution, contributing over 

one-third carbon dioxide emissions, of which vehicle 

transportation accounts for over 70% [3].  

Technological disruptions in the transportation sector 

facilitate decarbonisation because of rising environmental 

pollution and concerns about global warming. This 

transformation includes a move toward adopting electric 

vehicles (EVs), which have several benefits, such as shorter 

payback period and longer lifespan, helping to reduce CO2 

emissions and change the way transportation will be in the 

future [4]. With the promise of lower emissions and less 

reliance on oil, EVs have drawn much interest as a leading the 

way for environmental sustainability and emissions-free 

mobility [4], [5].  

Artificial intelligence (AI) is the most fascinating and 

discussed technology in the current decade for its nature to 

mimic human intelligence. The field of AI has shown an 

upward trend of growth in the 21st century (from 2000 to 2015) 

[6]. Artificial Intelligence (AI) is the study of creating machines 

that can perceive, analyze, comprehend, and react like humans. 

Simply said, the ultimate goal of artificial intelligence (AI) is to 

extend and argue humanity's capacity and efficiency in the work 

of changing nature and regulating society through intelligent 

machines. Simultaneously, artificial intelligence technologies 

that enhance the system's overall capabilities have significant 

importance. The legal standing of AI technology is examined 

in this study. In the current societal development stage, AI is 

rapidly developing its capabilities as a future technology.  

This research study aims to provide an overview of AI and 

explain how it relates to the concepts of SOC and SOH. A 

difficulty at the junction of AI is data integration. AI finds 

extensive application in the automotive, logistics, healthcare, 

stock trading, robotics, finance, transportation, and educational 

domains. AI techniques provide promise for the vehicle, the 

infrastructure, the driver, or the transport user—and especially 

for the interactions among them. Transportation is changing as 

a result of the EV industry's adoption of AI, particularly deep 

learning (DL) and machine learning (ML), which enhances 

user experience, efficiency, sustainability, and safety.  
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Li-ion batteries are primarily used in EVs because of their 

exceptional qualities [7]. Li-ion batteries provide high power 

and energy density, increased voltage, prolonged life cycles, 

and low self-discharge rates. These qualities make them the 

ideal option for EVs, further supported by their widespread use 

in portable electronics, automotive applications, and stationary 

energy storage systems compared to earlier battery technologies 

[8]. Li-ion batteries have shown rapid growth as the fastest-

growing technology among different energy storage solutions 

[9]. However, Li-ion batteries have difficulties and 

disadvantages despite their dominance and countless benefits. 

Limited range, lengthy charging times, high costs, and 

reliability and safety concerns are a few of these problems. 

Their sensitivity to ageing and temperature requires careful 

management to avoid deterioration, ageing, and thermal 

runaways [10].  

A crucial component of EVs is battery management system 

(BMS). Its used for controlling temperature, evaluating charge 

and health, and monitoring essential battery parameters. It 

offers priceless insight into battery health, monitors key 

indicators, and guards against overcharging and over-

discharging situations [8], [11]. It is essential to improve EV 

safety to understand the battery's status, including the SOC, 

SOH, temperature, current rate, and charging/discharge 

conditions [12].  

The assessment of battery SOH is crucial for ensuring the 

safety and optimal perfrmance of batteries. Given the growing 

demand for batteries with longer lifespans in EVs, 

understanding SOH is important in optimising battery lifespan 

and lifecycle which are closely related in energy applications 

like EVs. SOH reflects performance errors but cannot be 

directly estimated because of the complex factors affecting 

battery ageing. Like all energy storage technologies, Li-ion 

batteries degrade over time, decreasing capacity and power 

output. Accurate methods for estimating the SOH of Li-ion 

batteries are necessary for effective monitoring and 

management of their degradation, ensuring optimal 

performance and longevity [13], [14]. Therefore, the aims of 

this research paper is to investigate the important issues related 

to BMS, SOC, and SOH aiming to provide a detail insight on 

BMS used in EVs. Hence, this research paper highlight the need 

of DL technique for SOC and SOH estimation Li-ion battery 

based on the previous researchers. 

II. LITHIUM-ION BATTERY 

The adoption of EVs as a sustainable transportation solution 

contributes to the simultaneous reduction of fossil fuel 

consumption and carbon emissions. Due to its numerous 

advantages, including high energy density, long lifespan, rapid 

charging capabilities, high operating voltage, and low self-

discharge, the Li-ion battery has emerged as the preferred 

choice for EVs [14]. Thus, accurately estimating the state of a 

Li-ion battery is crucial in minimising excessive design 

expenses and enhancing overall vehicle efficiency, safety, and 

reliability. Hence, the Li-ion battery pack is one of the most 

expensive components in an EV, proper estimation of its states 

becomes essential [15]. 

A. Demand of Lithium-Ion Batteries For EV, 2016-2022  

    Based on the data presented in Fig. 1, it can observe the trend 

in demand for Li-ion batteries in EVs, measured in kilo tons, 

for the year of 2016 until 2022. Notably, the demand for Li-ion 

batteries for EVs displayed a consistent increase starting in 

2018 and extending through 2020. However, a significant 

upsurge in demand became evident in 2021 and 2022, 

signifying a substantial shift towards Li-ion batteries as the 

preferred battery type for a significant portion of EVs. This 

trend emphasises the crucial role of research and development 

efforts focused on improving the health and efficiency of Li-ion 

batteries, as their impact extends beyond the EV industry to 

various other sectors 

 

 
Fig. 1. The trend of lithium-ion batteries demands for EV [16] 

 

B. Rechargeable Batteries Type 

Table I presents a summary of various types of rechargeable 

batteries. The discussion focuses on a limited selection of 

batteries that are commonly used or have the potential to be 

used as alternative methods soon. Detailed properties of these 

batteries, along with a suitable comparison, are provided in 

Table I. The analysis in Table II shows that the Li-ion battery is 

the most suitable choice for various applications because of its 

helpful characteristics, such as high energy density and cell 

voltage. In contrast, other batteries utilising different 

chemistries are currently not as viable for vehicles and portable 

devices [17]. 

TABLE I . COMPARISON OF BATTERY TECHNOLOGY [17] 
 

Lead Acid 

battery 

Nickel 

based 

battery 

Sodium 

ion-based 

battery 

Lithium 

ion-based 

battery 

Cell 

Voltage 

2 V 1.2 V 3.4 V 3.3 – 3.7 V 

Energy 
density 

30 – 50 
WhKg−1 

60 – 80 
WhKg−1 

100 – 115 
WhKg−1 

80 – 220 
WhKg−1 

Cost around USD 

100 per KWh 

around 

700 – 800 
per KWh 

around 

USD 445 
– 555 per 
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C. Electric Vehicles Currently Latest Model  

Upon reviewing the information as tabulated in Table II, the 

primary power source of choice for leading companies in the 

EVs industry is predominantly Li-ion batteries for their latest 

models. An analysis of the data further reveals that typical EV 

models exhibit energy capacities within the range of 80 kWh to 

100 kWh. Vehicles that exceed this range fall into two 

categories: high-performance models designed for speed or 

larger EVs intended for extended use and enhanced capacity. 

 

 

 

 

                                                    TABLE II SPECIFICATIONS OF CURRENTLY LATEST EV MODEL THAT USE LI-ION BATTERY[18] 

Car Type Manufacturing year Brand Battery Capacity 

 

2018 Jaguar I-PACE 90 kWh  

 

2019 Mercedes Benz EQC 80 kWh  

 

2017 Tesla model 3 82 kWh  

 

2021 Tesla model S 100 kWh  

 

2015 Tesla model X 100 kWh 

 

2020 Tesla Model Y 79.2 kWh 

III. BATTERY MANAGEMENT SYSTEM 

A. Battery Management System (BMS) Function 

BMS plays a vital role in various industries, particularly the 

automotive sector, by ensuring battery components’ safety, 

dependability, and efficiency. Its primary function is to regulate 

key operating parameters of the battery, such as current, 

voltage, and power, to optimise its lifespan. The BMS can 

calculate the SOC and SOH of the battery, making it suitable 

for innovative applications [19].  

In EVs, including battery-operated and hybrid EVs, it is 

crucial to have a monitoring system in place to prevent potential 

tragedies caused by the unpredictable behaviour of the battery. 

From a safety perspective, the BMS is vital in alerting the user 

about unforeseen conditions and taking appropriate corrective 
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measures. In automotive systems, the BMS monitors the 

temperature of the coolant surrounding the battery 

pack. This helps optimise the distribution of power to 

individual components more efficiently [20].  

Here are several essential functions that a BMS possess [21], 

[22]: 

1) Data Acquisition 

The BMS collects data from multiple sensors, such as 

voltage, current, and temperature, to monitor the battery 

system. 

2) Battery Health Monitoring 

The BMS ensures the battery is in optimal condition by 

continuously assessing its performance and detecting any 

abnormalities or degradation. 

3) State Estimation 

The BMS estimates the battery’s state, including SOC and 

SOH, providing crucial information about its energy level 

and overall condition. 

4) Cell Balancing 

The BMS implements a cell balancing procedure to 

equalise the charge levels among individual battery cells, 

enhancing their longevity and optimising performance. 

5) Charge Control 

The BMS regulates the charging process of the battery, 

ensuring that it is performed safely and efficiently. 

6) Thermal Management 

The BMS actively manages the battery’s temperature, 

utilising various techniques to prevent overheating or 

extreme temperature fluctuations. 

7) Communication 

The BMS establishes communication with different 

components of the battery system, enabling coordinated 

operation and exchanging important information. 

8) Alerting and Reporting 

The BMS promptly notifies relevant controllers or systems 

about the battery’s state, allowing for timely actions or 

interventions when necessary. 

 

B. Electrical Vehicle Construction 

 
Fig. 2. The basic construction of EV [23] 

 

Diagram depicted in Fig. 2 clearly illustrates an EVs 

structure. The diagram shows that the battery is at the vehicle's 

rear. The BMS is interconnected with the battery, serving the 

critical role of monitoring the battery’s condition and 

overseeing all components that can potentially affect the 

battery’s overall health and performance. 

C. Battery Management System (BMS) Operation 

In BMS, there are three types of parameters involved. Fig. 3 

explains the interrelation and significance of SOC, SOH, and 

SOP parameters in battery systems and their influence on the 

overall performance and behaviour of the battery. 

 

 
Fig. 3. The battery conditions of SOC, SOH and SOP 

 

BMS technology controls and maintains batteries through 

sensors, controllers, actuators, and algorithms. Its primary aim 

is to ensure battery safety and reliability while providing 

essential data for vehicle control, energy management, and 

intervention in case of abnormal battery conditions. In addition, 

the BMS collects real-time data on individual cell parameters, 

such as temperature, terminal voltage, and current, to estimate 

SOC, SOP, and SOH using embedded algorithms and 

strategies. The estimation results are then relayed to the vehicle 

control unit (VCU) to manage energy and power distribution in 

EVs [24]. 

 

Fig. 4. Block diagram of battery management system[25] 

 

Fig. 4 shows the basic block diagram of BMS. To achieve 

the desired voltage, the battery pack of an EV is formed by 

connecting multiple cells in series and parallel. These cells can 

be charged with electric current and discharged as needed. 

However, to mitigate cell imbalance within the battery pack 

and enhance cell capacity, the implementation of a BMS is 

essential. 

Battery cell balancing can be accomplished through two 

methods: active and passive. Active cell balancing involves 
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charging a low-voltage cell using a high-voltage cell, whereas 

passive cell balancing dissipates excess energy stored in the 

battery as heat. The BMS collects data such as voltage, current, 

and temperature from each cell to make decisions on cell 

balancing, thermal management, and estimate the SOC and 

SOH of the battery. 

IV. STATE OF CHARGE AND STATE OF HEALTH 

A. State of Charge (SOC) 

The battery’s SOC acts as a fuel gauge, similar to those in 

traditional gasoline vehicles. However, unlike a fuel gauge that 

directly shows the remaining energy, determining the 

percentage of usable energy left inside a battery requires an 

indirect measurement through estimation. This estimation 

relies on various methods and techniques that utilise 

measurable signals, including battery terminal voltage, current, 

and temperature [26]. 

Estimating the SOC accurately is a challenging task because 

of the non-linear and variable behaviour of batteries. In the 

design of BMS for EVs, SOC estimation holds utmost 

significance. It plays a crucial role in performing EVs. Various 

methods are employed to achieve precise and reliable SOC 

estimation, considering the unique characteristics of batteries 

[27]. 

EVs Li-Ion battery (LIB) is a dynamic and non-linear system 

with multiple state variables. The key to effective control and 

maximising LIB power is accurately predicting and 

understanding its dynamic behaviour. 

SOC represents the measurement of the remaining energy in 

a battery (𝜓). In physical terms, the remaining energy in a 

battery is defined as the average concentration of Li-ions in the 

cathode (𝐶𝑠,𝑎𝑣𝑔) relative to the maximum achievable 

concentration [28] as shown in (1). 

 

𝜓 =  
𝐶𝑠,𝑎𝑣𝑔

𝐶𝑠,𝑚𝑎𝑥
 (1) 

 

In theory, it is possible for the SOC of a battery to be at 𝜓 =
0%  or 𝜓 = 100%. However, it is not feasible to fully deplete 

or overcharge a battery as it can damage its structure and 

accelerate degradation. Therefore, a range of SOC values is 

defined for Li-ion batteries, where the lower limit 𝜓0% > 0 and 

the upper limit 𝜓100% < 1. The SOC is determined based on 

the ratio within this defined range of SOC values as shown in 

(2). 

 

𝑆𝑂𝐶 =  
𝜓𝑘− 𝜓0%

𝜓100%− 𝜓0%
    (2) 

 

The variable 𝜓𝑘 represents the remaining energy in the 

battery at a specific time k. whereas this definition of SOC is 

theoretically accurate, it is not practically feasible for a BMS to 

directly measure ψ due to the inability to directly measure the 

concentration of Li-ions. Consequently, an alternative 

definition of SOC is necessary, one that is not reliant on directly 

measuring the Li-ion concentration [28].  

 

𝑆𝑂𝐶(𝑡) =  (
𝐶𝑟

𝐶𝑚
) 100%    (3) 

 

𝐶𝑟 represents the remaining capacity available to power 

electric devices. 𝐶𝑚 denotes the maximum capacity the cell can 

store, as determined by its electrochemical characteristics. The 

SOC ranges from 0% to 100%, where 0% indicates a fully 

discharged battery, and 100% indicates a fully charged battery 

[29]. Conventionally, the SOC is expressed in percentage as 

presented in Fig. 5, where 100% and 0% represent the fully 

charged and fully discharged conditions of the battery, 

respectively. 

 

 
Fig. 5. The layout of SOC 
 

B. State of Health (SOH) 

The SOH of a battery describes the difference between a 

battery being studied battery and considers cell aging. A 

battery’s SOH reflects its overall health condition. It directly 

impacts the SOC of the battery. SOH can be determined by 

measuring the capacity and impedance of the battery. It 

naturally declines as the battery ages and undergoes wear and 

tear. Factors such as overcharging, over-discharging, and 

exposure to high temperatures can contribute to a shortened 

lifespan and diminished SOH of the battery [30]. The lifespan 

of a Li-ion battery is determined by the number of cycles it can 

undergo before its SOH decreases to 80%. Once the SOH value 

reaches 80% or lower, it is typically recommended to replace 

the battery [31]. It is defined as the ratio of the maximum 

battery charge to its rated capacity. It is expressed as a 

percentage as seen in Fig. 6. 

 

 

 

 

 

 

 

 

 

Fig. 6. The SOH illustration of health condition 

 

Two commonly used definitions of SOH are based on 

different performance characteristic parameters. One definition 

is based on capacity, whereas the other is internal resistance. 

The specific details of these two definitions can be described 

using (4) and (5): 
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𝑆𝑂𝐻 =  
𝑄𝑐

𝑄𝑛𝑒𝑤
 × 100%    (4) 

 

𝑆𝑂𝐻 =  
𝑅𝐸𝑂𝐿−𝑅

𝑅𝐸𝑂𝐿− 𝑅𝑛𝑒𝑤
 × 100%     (5) 

 

In the given (4), 𝑄𝑐 represents the maximum usable capacity 

of the battery, 𝑄𝑛𝑒𝑤  represents the initial rated capacity of a 

new battery under the current cycle C. 𝑅 represents the actual 

internal resistance during the current cycle, 𝑅𝑛𝑒𝑤 represents the 

initial internal resistance of the new battery. 𝑅𝐸𝑂𝐿  represents the 

internal resistance at the end of the battery's life. 

With an increasing number of battery cycles, the maximum 

available capacity of the battery tends to decrease, whereas the 

internal resistance tends to increase. Battery failure is 

commonly observed when the internal impedance reaches 

twice the initial impedance (𝑅 = 2 ×  𝑅𝑛𝑒𝑤). Similarly, when 

capacity is used as a performance characteristic parameter, it is 

considered that the battery needs to be replaced when the 

maximum usable capacity decays to 80% of the rated capacity 

(𝑄 = 80% × 𝑄𝑛𝑒𝑤) [32]. 

 

C. SOH Measurement Method 

1) Direct Measurement Methods 

These methods involve measuring various parameters of the 

battery, including impedance, internal resistance, open-

circuit voltage (OCV), and charge/discharge current. A 

notable observation is the strong inverse relationship 

between battery capacity loss and internal resistance. In 

simpler terms, as the internal resistance of the battery 

increases, its capacity tends to degrade. This relationship is 

widely utilised in estimating the SOH of the battery [33]. 

2) Model-Based Method 

Battery models are created to evaluate the ageing process of 

batteries, and two common types of models are used: the 

electrochemical model (EChM) and the equivalent circuit 

model (ECM). The ECM model is constructed using 

electrical components, such as resistors, capacitors, and 

voltage sources [33], [34]. 

3) Adaptive Filter Methods 

Adaptive filter methods, such as the Kalman filter, particle 

filter, and the fewest squares, are frequently employed for 

battery parameter estimation. In the Kalman filter method, 

battery parameters are measured over a specific period to 

calculate the SOH of the battery [35]. 

4) Data-Driven Method 

Currently, data-driven methods have emerged as the 

preferred approach for calculating the SOH of batteries. 

This shift is primarily attributed to advancements in 

computing devices such as high-speed CPUs, graphical 

processing units (GPUs), and sophisticated learning 

algorithms. In the data-driven method, a significant amount 

of battery parameters is continuously collected until the 

battery reaches failure. SOH estimation is accomplished 

using various techniques, such as fuzzy logic (FL), support 

vector machine (SVM), artificial neural network (ANN), 

and DL methods [36]. 

V. AI-BASED ESTIMATION TECHNIQUES 

A. Artificial Intelligence In BMS 

The method based on AI can applied to both SOC estimation 

and SOH estimation [36], [37]. Machine Learning (ML) and 

DL are subsets of AI. They form part of the broader AI field, as 

depicted in the Venn diagram in Fig. 7, which illustrates the 

subdivisions within AI, including ML and its subsequent 

branches, such as representation learning and DL. In the 

context of estimating the SOC and SOH for EVs, innovative 

techniques in ML are incorporated within the AI domain. These 

methods encompass various subfields of ML and have 

significant relevance in the field of EVs [38]. 

 

 
Fig. 7. Venn diagram SOC and SOH Estimation [38] 

 

B. BMS Machine Learning 

ML techniques have emerged as prominent methods for 

estimating crucial battery performance indicators, including 

SOH and SOC. These approaches leverage the advancements 

in computational power and the increasing availability of 

battery data, enabling more accurate and reliable estimations of 

battery parameters [39]. 

While in [40], it focuses on predicting the SOC of a battery 

using six different machine-learning algorithms. These 

algorithms include artificial neural network (ANN), support 

vector machine (SVM), linear regression (LR), Gaussian 

process regression (GPR), ensemble bagging, and ensemble 

boosting. By utilising these ML models, the researchers analyse 

the non-linear relationship between input features such as 

voltage and current and the estimation of SOC. ML algorithms 

are chosen for SOC estimation because of their ability to handle 

non-linear data effectively. The proposed method can be 

applied for real-time SOC estimation by optimising the 

hyperparameters of the GPR-linear model. 

The use of ML techniques to estimate the SOH parameters 

in EV applications under various scenarios was explored and 

studied by [41]. By conducting a comprehensive analysis of 

cell ageing in different storage conditions, a new approach is 

developed that utilises impedance data for SOH estimation. A 

fully connected feed-forward neural network (FC-FNN) is 
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utilised to estimate the battery’s maximum available capacity 

based on a limited number of impedance measurements. The 

proposed method is tested using real EV battery data, 

considering long-term scenarios and diverse degradation 

procedures. 

This research paper [42], focuses on predicting the SOC of 

Li-ion batteries under dynamic loads. The study compares the 

performance of various SOC ML models in predicting the SOC 

of an 18650 cell. These models are developed using 

measurement data got from dynamic load tests. To account for 

the impact of realistic operational conditions, a multi-sine load 

profile consisting of five charge/discharge load patterns applies 

to the cell. The results of the performance analysis indicate that 

Long Short-Term Memory (LSTM) Neural Network and 

Prophet models exhibit high efficiency in SOC prediction and 

are considered suitable options for real-time applications. 

C. BMS Deep Learning 

The accuracy and stability of battery models can be 

significantly enhanced using state estimation methods based on 

DL algorithms. However, a major obstacle to implementing 

these methods is the requirement for a large amount of training 

data. To overcome this challenge, a deep transfer learning 

method is developed to expedite the training process of the 

battery model. This approach enables the utilisation of 

operation data from various types of EVs to establish state 

estimators. By leveraging this deep transfer learning technique, 

the training of the battery model can be accelerated, leading to 

improved performance and efficiency [43]. 

A method utilising a deep neural network (DNN) is 

introduced to estimate the SOC of LiFeO4 batteries accurately 

was investigated in [44]. By analysing the charging current and 

voltage data, the DNN provides an initial SOC value that 

improves the accuracy of the Ampere-hour (Ah) counting 

method. The DNN achieves impressive SOC estimation results, 

with an error rate below 2.03% across the entire SOC range, 

even when encountering flat open circuit voltage (OCV) 

plateaus. This method can be adapted for different charging 

protocols beyond the constant current constant voltage (CCCV) 

approach. To enhance the method’s robustness, a linear 

Kalman filter is incorporated, forming a closed-loop estimation 

framework that combines the DNN with the Ah counting 

method. Validation tests confirm the framework’s ability to 

improve resistance against random noises and error spikes. 

While [45], investigates the estimation of SOC using both a 

deep neural network (DNN) and an artificial neural network 

(ANN) based on data collected from laboratory experiments 

and simulations. The DNN exhibited exceptional efficiency, 

delivering accurate and reliable estimation performance for 

both battery types. The average error value was less than 0.5%, 

with a maximum error value of less than 2.5%. By showing a 

strong correlation between the estimated SOC and the reference 

SOC, the validation test results confirmed a successful match 

between the two. In conclusion, the proposed algorithm 

provides robust and precise SOC estimation for the batteries 

under study. 

The input data comprises electrochemical impedance 

spectroscopy (EIS) measurements at different temperatures 

collected from batteries with a SOC of 100% where a DL 

architecture was introduced for SOC Li-ion batteries 

estimation. A key contribution of this method is the conversion 

of EIS data into a 2D image, which is then used for 

unsupervised feature learning using a convolutional auto-

encoder (CAE). The extracted features are then fed into a deep 

neural network (DNN) to estimate the charge capacity and SOH 

of the batteries at various temperatures. The proposed method 

shows its effectiveness in training multi-temperature SOH 

estimation models using DL [46]. 

 

1) Estimating SOH Using Deep Learning Method 

Data-driven approaches include ML and DL strategies that 

take advantage of the relationships that hide in large datasets 

and do not require a mathematical model of the batteries. It is 

crucial to note that each of these models has a unique set of 

challenges. They require extensive computing resources, such 

as massive memory devices and cutting-edge CPU units, as 

well as complicated training procedures [47]. DL highlights 

being “deep” by utilising several hidden layers in neural 

networks to a large extent. In the domain of DL, there are a few 

common algorithms. Recurrent Neural Networks (RNNs), for 

instance, include a context unit that considers historical ageing 

information. Fully connected hidden layers characterise Deep 

Neural Networks (DNNs). Convolutional Neural Networks 

(CNNs) integrate convolutional and pooling layers ahead of the 

hidden layers, and these convolutional and pooling layers are 

employed to reduce the dimensionality of the input data 

effectively. This hierarchical structure is a key aspect of DL, 

allowing for sophisticated data processing and feature 

extraction [48]. 

 

 

2) Category of Deep Learning Methods 

      

 
Fig. 8 illustrates common used methods employed and 

studied by previous researchers for estimating the SOC and 

SOH. The accompanying Table III will provide brief 

explanations of each model’s operation, along with their 

respective advantages and disadvantages. 

 

                                            

    Fig. 8. The architecture of DL methods 
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TABLE III . EXPLANATION OF DEEP LEARNING (DL) MODEL AND ITS ADVANTAGE AND DISADVANTAGE 

Model Operation Advantage Disadvantage 

DNN[49] DNNs consist of multiple hidden 

layers.Information is passed through the 

hidden layers.These layers are activated by 
one or more activation functions. 

DNN's deep architecture enables SOH 

estimation using sensor data such as V, I, T, and 

time-series data, without requiring extensive 
feature extraction. 

Despite its higher accuracy in SOH 

estimation, has drawbacks including 

increased computational time and greater 
computing resource requirements. 

CNN[49] CNN models, commonly used for image 

recognition and classification, have also been 
successful in battery SOH estimation. 

CNN models have the advantage of low 

computational training time, reducing the 
human effort needed to develop their 

functionalities. 

CNN can automatically extract and select 

features from raw data. 
This feature extraction is enabled using 

convolutional and pooling layers in CNN. 

Data integration during the pooling process 

can result in the loss of some features. 
Due to its structural variability, it requires 

multiple parameter adjustments for 

confirmation. 
Many samples are needed for training. 

RNN[49] RNNs store historical information in the 
context unit and allow feedback from hidden 

layers to the previous layer's input. 

This addition of the context unit makes RNNs 
uniquely suited for handling sequential data. 

RNNs excel in modelling time-dependent 
behaviour. 

RNNs incorporate the dependence on previous 

states within the network. 
This allows the consideration of the battery's 

behaviour up to the training point when 

predicting its future State of Health (SOH). 

RNNs' strength in modelling time-
dependent behaviour can be a drawback in 

certain applications. 

Predicting future behaviour with RNNs 
necessitates knowledge of the battery's past 

behaviour. 

LSTM[50], 

[51] 

The LSTM model is a highly effective DL 

technique for estimating the SOH of lithium-

ion batteries. 
It is commonly used because it can resolve the 

vanishing gradient problem and improve 

model training accuracy in SOH estimation. 

LSTM calculates dependencies in time series 

data. 

It excels in handling time-related data. 
It addresses gradient vanishing problem during 

training. 

Demonstrates strong generalization capabilities. 

High hardware resource requirements. 

Demands a large amount of supporting data. 

Computational efficiency is lower 
compared to simple neural networks or 

data-driven algorithms. 

GRU[50], 

[51] 

GRU models are well-suited for SOH 

estimations in lithium-ion batteries. 
They effectively address the vanishing 

gradient problem and require less memory 

space for model training. 

GRUs, like other recurrent neural networks, are 

capable of learning long-term dependencies, 
which is beneficial for time-series data like 

battery usage data. 

GRUs have fewer parameters than LSTMs, 
making them more computationally efficient 

and still maintaining a similar performance 

level. 

Like other DL methods, GRUs require a 

large amount of data for training. 
GRUs, like other DL methods, lack 

interpretability which can be problematic in 

certain applications. 

 

                          TABLE IV . ANALYSIS OF PREVIOUS RESEARCH PAPERS 

Author Title Objective Method 

Dong-Ji 

Xuan et al. 

2020[51] 

Real-time estimation of state-of-charge in 

lithium-ion batteries using improved 

central difference transform method 

• Real-time SOC estimation. • Improved central difference transform Kalman filter. 

• Square root second-order central difference transform 

Kalman filter (SRCDKF). 

Prakash 
Venugopal 

et al. 
2019[35] 

State-of-Health Estimation of Li-ion 

Batteries in Electric Vehicle Using 

IndRNN under Variable Load Condition 

• SOH estimation. • SOH estimation method using an independently 
recurrent neural network (IndRNN) 

• Compares IndRNN with other recurrent neural network 
(RNN) architectures like long short-term memory 

(LSTM) and gated recurrent unit (GRU). 

Xiaosong Hu 

et al. 

2020[52] 

An enhanced multi-state estimation 

hierarchy for advanced lithium-ion 

battery management 

• Co-estimation hierarchy for the 

State of Charge (SOC), State of 

Health (SOH), and State of Power 
(SOP). 

• Multi-Time-Scale Estimation Framework. 

• Online, model-based SOC estimation using modified 

moving horizon estimation (mMHE). 

Ran Li et al. 

2021[53] 

On-Line Estimation Method of Lithium-

Ion Battery Health Status Based on PSO-
SVM 

• Online estimation method for LI 

battery health. 
• Using the Particle Swarm Support 

Vector Machine algorithm. 

• Particle Swarm Optimization-Support Vector Machine 

(PSO-SVM). 
• Joint SOC-SOH estimation within a battery 

management system. 

Kangwei Dai 
et al. 

2019[54] 

 

An Improved SOC Estimator Using 
Time-Varying Discrete Sliding Mode 

Observer 

• Time-varying-model-based discrete 
sliding mode observer (TVDSMO) 

for SOC estimation. 

• Recursive fitting technology to update battery 
parameters automatically. 

• validated using LiFePO4 (LFP) and Ni-Mn-Co (NMC) 

lithium-ion cells across various temperatures and 
operating conditions. 

Shulin Liu et 

al. 
2022[55] 

 

A method for state of charge and state of 

health estimation of lithium-ion battery 
based on adaptive unscented Kalman filter 

• Joint estimation of SOC and SOH  

• Using AUKF algorithm in lithium-
ion batteries. 

• Adaptive Unscented Kalman Filter (AUKF) algorithm. 

• Simultaneous estimation of SOC and SOH. 

Ran Li et al. 
2022[56] 

 

State of Health and Charge Estimation 
Based on Adaptive Boosting integrated 

with particle swarm optimization/support 

vector machine (AdaBoost-PSO-SVM) 
Model for Lithium-ion Batteries 

• Estimated battery SOH using the 
PSO-SVM algorithm. 

• SOC-SOH online estimation method based on the PSO-
SVM algorithm. 

• Learning AdaBoost algorithm to enhance the PSO-SVM 

regression model. 
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Richard 
Bustos et al. 

2023[57] 

 

Lithium-Ion Battery Health Estimation 
Using an Adaptive Dual Interacting 

Model Algorithm for Electric Vehicles 

• Estimating state of charge (SOC). 
• Battery capacity of lithium-ion 

batteries (LiBs). 

• Dual-filter approach incorporates standard Kalman filter 
(KF). 

• sliding innovation filter (SIF) to estimate SOC. 

• capacity (dual-KF and dual-SIF). 
Zhansheng 

Nin et al. 

2022[58] 
 

Co-estimation of state of charge and state 

of health for 48 V battery system based on 

cubature Kalman filter and H-infinity 

• Multi-scale co-estimation approach 

for SOC and SOH estimation. 

• Cubature Kalman filter (CKF), forgetting factor-

recursive least squares (FF-RLS), and H-infinity 

algorithms. 

Chaolong 

Zhang et al. 
2022[59] 

 

A reliable data-driven state-of-health 

estimation model for lithium-ion 

batteries in electric vehicles 

• deep-ion battery SOH estimation. • Incremental capacity analysis (ICA) combined with an 

improved broad learning system (BLS) network. 
• broad learning system (BLS) network optimized. 

• particle swarm optimization (PSO) algorithm. 

 

D. Research Gaps 

From Table IV, it summarizes the latest and most influential 

research in the realm of enhancing the health of Li-ion batteries. 

Most of the research endeavours in this field have been directed 

towards the development of more precise methods for 

calculating the SOH of these batteries. Notably, some studies 

have a specific focus on SOC estimation, whereas others only 

address SOH estimation. This distinction can be observed in 

several of the research papers. However, it is important to note 

that SOC estimation plays a pivotal role in refining the SOH 

estimation model. The joint estimation of SOC and SOH has 

emerged as a highly popular strategy in recent years. Table IV 

shows that most of the methodologies used are RNN, SVM, 

EKF, PSO, SMO, H-infinity, ICA and BLS. However, there are 

gaps in AI techniques for SOC and SOH estimation involving 

DL and ML technique. In terms of the methodologies adopted, 

AI methods, encompassing ML and DL, have acquired 

significant traction. In terms of AI methods, covering ML and 

DL has gained significant traction. However, DL model 

estimation is less prevalent than ML model estimation, 

although it has the potential to improve accuracy and 

sophistication in battery health assessment. Therefore, this 

research will focus on DL techniques for SOC and SOH 

estimation as part of future research work as shown in Fig. 9. 

 

 
 

Fig. 9. AI application employed in this research

VI. CONCLUSION 

This study focuses on the research needs and completed 

projects related to EV BMS systems. Critical remarks from this 

study, however, point to gaps in the existing research, 

particularly with regard to the use of DL in Li-ion battery SOC 

and SOH modeling. As a result, DL has been proposed as a 

future study topic for the estimate of SOC and SOH models in 

Li-ion EV batteries. Because of its features and capacity to 

improve SOC and SOH estimating health models accurately, 

deep learning has a lot of potential for studying SOC & SOH in 

BMS. As a result, there is opportunity to investigate the DL 

technique further in order to thoroughly and clearly examine 

the correctness of SOC & SOH model estimations in BMS. 
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