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Abstract— This paper presents a comprehensive review of 

Artificial Intelligence (AI) techniques applied to autonomous 

vehicle (AV) behavior prediction in mixed traffic environments. 

The rapid advancement of AV technology, driven by AI, 

necessitates accurate prediction of surrounding vehicle behaviors 

for safe and efficient operation. The paper explores various 

machine learning and deep learning approaches, including 

Support Vector Machines, Random Forests, Convolutional Neural 

Networks, Long Short-Term Memory Networks, Graph Neural 

Networks, and Reinforcement Learning. These techniques 

demonstrate significant improvements in predicting and adapting 

to diverse road user behaviors, ultimately enhancing road safety. 

By analyzing the capabilities and limitations of these AI-powered 

solutions, this review aims to inform current applications and 

future advancements in AI-driven road safety. 

 
Index Terms—Autonomous Vehicles (AV’s), Artificial Intelligence 

(AI), Behavior Prediction and Mixed Traffic Environments. 

 

I. INTRODUCTION 

According to the World Health Organization (WHO), 

approximately 1.19 million people worldwide die annually as a 

result of road traffic crashes, with between 20 and 50 million 

sustaining non-fatal injuries [1]. Vulnerable road users, such as 

pedestrians, cyclists, and motorcyclists, face a significantly 

higher risk of fatalities compared to drivers of 4-wheel vehicles. 

Globally, while 30% of road deaths involve occupants of 4-

wheel vehicles, pedestrians, powered two- and three-wheelers, 

and cyclists collectively account for 70% of fatalities. This 

significant difference highlights the urgent need for effective 

measures to enhance road safety for these vulnerable groups 

[2]. In Malaysia, the situation is also particularly concerning, 

with over 600,000 recorded road accidents and over 6,400 

fatalities in 2023 alone [3]. 

 

Motorcyclists are disproportionately affected, accounting for 

65% of total fatalities [3]. Thus, these figures highlight the 

pressing need for effective strategies to reduce road traffic 

crashes and fatalities in the country.  

Several contributing factors increase the risk and severity of 

road traffic crashes. One significant factor is speeding, which 

not only raises the likelihood of crashes but also worsens their 

consequences [4]. Additionally, driving under the influence of 

alcohol or other psychoactive substances significantly increases 

the risk of road traffic injuries [5]. The risk escalates with 

increasing blood alcohol concentration in the case of drink-

driving, while drug-driving poses varying risks depending on 

the substance used. Furthermore, pedestrians struck by vehicles 

traveling at higher speeds also face significantly higher fatality 

rates [2]. The Global Status Report on Road Safety 2023 

provides compelling evidence of the prevalence of risky driving 

behaviors [2]. Data from the report indicates that a significant 

percentage of drivers exceed the speed limit, with rates ranging 

from 1% to 66% across different countries. Additionally, drink 

driving remains a persistent problem, contributing to 10% of 

fatalities in 77 countries. The non-use of safety equipment, such 

as helmets [6], seat-belts [7], and child restraints [8], remains a 

significant concern. According to the report, 20% of drivers and 

30% of passengers across multiple countries do not wear 

helmets, while 20% of drivers, 30% of front seat passengers, 

and 50% of rear seat passengers in various countries do not 

wear seatbelts. Furthermore, distracted driving, particularly 

mobile phone use [9], poses a significant risk, with studies 

reporting high rates of handheld phone use among drivers. A 

study by the Malaysian Institute of Road Safety Research 

revealed that human behavior is the primary cause of road 

crashes, followed by factors such as the design and condition of 

road infrastructure, as well as the condition of vehicles [10].  

These behavioral factors, combined with other risk factors such 

as unsafe vehicles [11], inadequate road infrastructure [12] and 

post-crash care [13], and insufficient enforcement of traffic 

laws [14], contribute to the high incidence and severity of road 

traffic crashes. Recognizing and addressing these factors are 

crucial steps in reducing the incidence and severity of road 

traffic crashes and injuries. 

Therefore, to address the growing concern of road safety, it 

is imperative to invest in AI-powered solutions. AI has the 

potential to revolutionize road safety by addressing the complex 

interplay of human behavior, vehicle dynamics, and 

environmental factors. AI-powered systems can analyze vast 
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amounts of data from various sources, including traffic patterns, 

vehicle behaviors, and environmental conditions, to predict and 

prevent potential accidents. This includes predicting the 

behaviors of diverse road users within mixed traffic 

environments, where interactions between vehicles, 

pedestrians, and cyclists coexist on the road. By leveraging AI, 

we can develop more intelligent transportation systems that can 

adapt to real-time conditions and mitigate the risks associated 

with human error. AI plays a crucial role in enabling AV’s to 

navigate roads safely. For instance, AI algorithms can 

accurately detect and track various objects on the road, such as 

vehicles, pedestrians, cyclists, and road signs [15]. By 

combining data from multiple sensors, AI can create a more 

comprehensive understanding of the environment, improving 

the accuracy of object detection and tracking. Furthermore, AI 

can plan optimal paths for AV’s to follow, considering factors 

like traffic congestion, road conditions, and the presence of 

obstacles [16]. Additionally, AI can assess potential risks on the 

road and adjust the AV's behavior accordingly [17]. AI also 

controls the AV's steering and acceleration to maintain a safe 

trajectory and speed. In emergency situations, AI algorithms 

can quickly initiate maneuvers like braking or swerving to 

avoid accidents. Moreover, AI enables AV’s to understand and 

respond to human commands or questions through natural 

language processing [18]. Furthermore, AI can monitor the 

driver's state and intervene if necessary to prevent accidents 

[19]. Finally, AI can be trained to make ethical decisions in 

complex scenarios, such as choosing between hitting a 

pedestrian or colliding with another vehicle [20]. By integrating 

AI algorithms into AV control systems, these vehicles can 

proactively adjust their speed, trajectory, and response to 

surrounding conditions, thereby reducing the risk of collisions 

and improving overall road safety. AI-powered AV’s can make 

real-time decisions based on the behavior of other road users, 

anticipating potential hazards and taking evasive action if 

necessary.  

This paper presents a comprehensive review of AI techniques 

applied to AV behavior prediction in mixed traffic 

environments. The study aims to identify effective AI 

algorithms for predicting the behavior of diverse road users, 

explore the potential of AI to mitigate road traffic fatalities and 

injuries, identify key challenges and opportunities associated 

with integrating AI into AV’s. By examining the capabilities 

and limitations of AI algorithms, this research seeks to provide 

insights into how AI-powered AV’s can contribute to enhanced 

road safety and inform future developments in this field. 

II. AUTONOMOUS VEHICLE 

While the rise of AV’s has gained prominence over the past 

two decades, their roots trace back to the early 20th century, 

beginning with Francis Houdina's 1925 remotely controlled car 

[21]. Houdina's vehicle, named Chandler, traveled about 19 

kilometers in Manhattan but was interrupted by a collision. This 

marked one of the first attempts at creating an AV. Significant 

advancements occurred in the 1980s with German engineer 

Ernst Dickmanns, who converted a Mercedes-Benz van into an 

AV equipped with an integrated computer [21]. In 1987, this 

vehicle successfully navigated traffic-free streets at 63 

kilometers per hour [21]. The 1990s saw further breakthroughs 

by Dickmanns, including a vehicle that traveled over 1,000 

kilometers through Paris traffic in 1994 and another that 

journeyed autonomously between Munich and Copenhagen in 

1995 [21]. These projects were part of the European 

Commission's Project Eureka, which provided substantial 

funding for AV research [21]. These milestones paved the way 

for the advanced AV technology we see today, demonstrating 

the long-standing human ambition to develop self-driving cars. 

 

A. AI as the Brain of Autonomous Vehicles 

Autonomous vehicles also known as self-driving cars or 

driverless cars, equipped with an intricate network of sensors 

and a powerful AI system, are revolutionizing transportation. 

The AI serves as the vehicle's intelligent brain, enabling it to 

navigate complex environments, interact with other road users, 

and safety. Fig. 1 shows the components of an autonomous 

vehicle [22]. It consists of various sensors and a central 

computer that work together to enable the vehicle to navigate 

and operate independently. 

 

 
Fig. 1. Illustration of Autonomous Vehicle 

 

1) Sensor Integration and Data Processing 

By integrating data from a diverse array of sensors, the AI 

can build a comprehensive understanding of its surroundings. 

GPS provides a general location and reference to maps, 

allowing the AI to identify potential hazards like construction 

zones or traffic congestion [23]. LiDAR creates a 3D map, 

helping the AI accurately perceive objects, their distance, and 

their relative positions [24]. Video cameras analyze images to 

recognize objects, interpret traffic signs, and understand the 

behavior of other road users [25]. Rear cameras monitor 

vehicles behind, enabling the AI to anticipate potential lane 

changes or tailgating [26]. Ultrasonic sensors detect obstacles 

in close proximity, such as pedestrians or parked cars [27], 

while odometry sensors track the vehicle's position and velocity 

[28]. Radar sensors, even in low-visibility conditions, detect 

and track objects, crucial for predicting the behavior of other 

vehicles in crowded traffic [29]. 
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2) Central Computer and Decision-Making 

The central computer, housing the AI algorithms, processes 

data from these sensors to make informed decisions in real-time 

[30]. It integrates information from all sensors and uses AI to 

predict the behavior of other vehicles, plan the vehicle's path, 

and control its actions, such as steering, accelerating, and 

braking. The wireless interface enables V2V (vehicle-to-

vehicle) and V2I (vehicle-to-infrastructure) communication, 

helping the vehicle anticipate potential hazards and make more 

informed decisions [31]. 

 

B. The Society of Automotive Engineers (SAE) Automation 

Levels 

The Society of Automotive Engineers classification of 

driving automation levels as shown in Fig.2 provides a useful 

framework for understanding the progression towards fully 

AV’s [32]. As technology advances, the automotive industry 

moves closer to achieving Level 5 autonomy, where vehicles 

are capable of operating in any condition without human 

intervention. 

 

 
Fig.2. The Society of Automotive Engineers (SAE) Automation 

Levels 

 

At Level 0 (No Automation), the driver is entirely responsible 

for all driving tasks, including steering, accelerating, braking, 

and parking. The vehicle offers no automated assistance beyond 

basic safety features like airbags and anti-lock brakes. This 

level represents traditional, human-driven vehicles. 

Level 1 (Driver Assistance) introduces basic driver support 

systems. The vehicle can assist with either steering or 

acceleration/deceleration, but the driver must remain engaged 

and ready to take control at all times. Common features at this 

level include adaptive cruise control and lane departure 

warning.  

Level 2 (Partial Automation) vehicles can control both 

steering and acceleration/deceleration in specific situations, but 

the driver must remain engaged and monitor the environment at 

all times. Advanced driver assistance systems (ADAS) like 

lane-keeping assist, automatic parking, and adaptive cruise 

control are prevalent at this level.  

At Level 3 (Conditional Automation), the vehicle can 

perform all driving tasks in certain conditions and 

environments, but the driver must be ready to take control when 

the system requests. This level often involves features like 

traffic jam assist and highway pilot.  

Level 4 (High Automation) vehicles can perform all driving 

tasks and monitor the environment in specific conditions or 

environments. The human driver does not need to intervene, but 

the system might not operate in all conditions. This level is 

suitable for autonomous taxis or delivery vehicles operating in 

defined geographic areas.  

Level 5 (Full Automation) represents the pinnacle of 

autonomous driving, where the vehicle can perform all driving 

tasks in all conditions and environments that a human driver 

could handle. No human intervention is required. This level is 

the ultimate goal of AV development. 

III. LITERATURE REVIEW 

A. Machine Learning Approaches 

1) Support Vector Machines (SVMs) 

SVMs are a type of supervised machine learning algorithm 

that excel at classification tasks. In the context of AVs, SVMs 

can be used to predict the intentions and actions of other 

vehicles and pedestrians, enabling AVs to navigate safely and 

efficiently in mixed traffic environments. 

In this study [33], A. Benterki et al. proposed two machine 

learning approaches for lane change prediction: Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) to 

predict lane changes of surrounding vehicles on highways. The 

authors then compared the performance of these two models to 

determine which one was more effective for the task. The 

system uses features extracted from the NGSIM dataset 

containing detailed information on vehicle trajectories , such as 

longitudinal velocity, lateral velocity, longitudinal acceleration, 

lateral acceleration, distance to left marking, distance to right 

marking, yaw angle and yaw rate related to road. These features 

provide information about the vehicle's motion, position, and 

orientation relative to the road, which are all important factors 

in predicting lane changes. The SVM and ANN models are 

trained on the prepared dataset, which contains vehicle 

trajectory data with features and corresponding labels for lane 

change and lane keeping maneuvers. This training process 

involves the models learning patterns in the data to distinguish 

between different maneuver types. Once trained, the models are 

evaluated on a separate testing dataset to assess their 

performance. This involves comparing the models' predicted 

maneuver types with the actual known maneuver types in the 

testing data. Metrics like accuracy, recall, precision, and F1-

score are used to evaluate the models' ability to correctly 

classify lane changes and lane keeping events. 

 

 
Fig 3: Lane Change and Lane Keeping Scenarios 
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The study successfully predicts lane changes using SVM and 

ANN. The SVM model achieved good performance reaching a 

prediction accuracy of 97.1%, with sensitivity, precision, and 

F1-score all at 95.7%. ANN achieved an accuracy of 98.8% and 

higher scores for the other metrics, but SVM was slightly faster 

in terms of prediction time. Overall, both methods 

demonstrated effective prediction capabilities due to the well-

chosen features that captured vehicle dynamics and road 

structure. 

The study by X. Wang et al. [34] investigates the 

enhancement of driver intention recognition by incorporating 

emotional factors using SVM theory. The first step involves 

collecting data on various aspects that influence driving 

behavior. This likely includes vehicle parameters such as speed, 

acceleration, pedal position, steering wheel angle, 

environmental factors such as road conditions, weather 

conditions, traffic density, and driver emotions such as 

indicators of emotions like fear, anger, or joy (potentially 

measured through physiological responses or surveys). The 

SVM algorithm is trained on a portion of the prepared data. 

After training, the SVM model is evaluated on a separate 

portion of the data (the testing set). The SVM model used in the 

study effectively recognized driver intentions, especially when 

considering emotional factors. It achieved high accuracy rates 

in both real and virtual driving scenarios for both speed changes 

and lane changes. Incorporating emotions significantly 

improved the model's accuracy, suggesting that understanding 

a driver's emotional state provides valuable insights into their 

likely intentions. While the model performed better with 

negative emotions, it still showed improvement with positive 

emotions compared to a model without emotional factors. The 

model's performance was consistent across different driving 

environments, indicating its potential for practical application.  

S. Roy et al. [35] presents a robust vehicular control system 

equipped with various safety features, including collision 

detection, alcohol detection, seat-belt detection, and speed 

control. A key contribution of the study is the integration of 

SVMs with radial basis function kernels to classify and mitigate 

potential accidents. The system utilizes SVMs to analyze data 

from three sensors. Alcohol Sensor (MQ-3): Detects alcohol 

concentration in the driver's breath, Ultrasonic Sensor: 

Measures distance to nearby objects, and Vibration Sensor: 

Detects bumps and shakes. SVMs are trained on large datasets 

of sensor readings, each with features (e.g., alcohol 

concentration) and a corresponding class label (e.g., "Heavily 

Drunk"). Once trained, SVMs can classify new sensor readings. 

For instance, if a new alcohol sensor reading exceeds a certain 

threshold, the SVM will classify the driver as "Heavily Drunk." 

The SVM classifier achieves an impressive 95.8% accuracy in 

predicting accident likelihood based on vibration and ultrasonic 

sensor inputs. The alcohol detection system demonstrates 100% 

accuracy in distinguishing between heavily drunk and mildly 

drunk states, ensuring appropriate actions like engine disabling. 

Furthermore, the collision avoidance system effectively alerts 

drivers to potential collisions, reducing the risk of accidents. 

Overall, the study demonstrates the effectiveness of the 

proposed vehicular control system in mitigating road accidents 

through its accurate prediction of accident likelihood and timely 

alerts. The integration of SVMs and various sensors contributes 

significantly to the system's performance. 

2) Random Forests 

Random Forest is a powerful machine learning algorithm that 

can be effectively used for predicting the behavior of AVs in 

mixed traffic environments. By analyzing various factors such 

as vehicle positions, speeds, and road conditions, Random 

Forest can accurately anticipate the actions of other vehicles 

and pedestrians, enabling AVs to make informed decisions and 

navigate safely. 

In the study, X. Gu et al. [36] introduces a data-driven 

approach using the Random Forest algorithm to predict lane 

changes. The authors use data from NGSIM dataset, which 

provides detailed information on vehicle positions, speeds, and 

accelerations. The raw data undergoes cleaning, filtering, and 

smoothing to ensure accuracy. For feature selection, the authors 

identify key factors that influence lane change decisions, such 

as vehicle speed, relative speed between surrounding vehicles, 

and distances between vehicles. A Random Forest model is 

built using the selected features and labeled data (lane change 

or no lane change). The model is trained on 80% of the data and 

tested on the remaining 20%. The result of the study indicates 

that the Random Forest-based lane change decision model 

achieved significant advancements in predicting vehicle 

behavior with high accuracy. When tested with sample data 

from the NGSIM dataset, the model accurately predicted 

vehicle lane change behavior in 97.72% of cases. Specifically, 

the accuracy was 98.22% for samples where vehicles 

maintained their lane and 97.22% for samples where vehicles 

changed lanes. Overall, the research paper shows that the 

Random Forest algorithm can be used to develop an accurate 

model for predicting lane-changing behavior of freeway 

vehicles. This model can be used to improve traffic flow and 

safety. 

3) k-Nearest Cluster Neighbor (k-NCN) 

k-NCN is an unsupervised learning technique that groups 

data points based on similarity. In recognition tasks such as 

image or pattern recognition, k-NCN aids in identifying similar 

instances or patterns within a dataset, facilitating classification 

or identification tasks. For AV’s, employing pattern recognition 

techniques such as k-NCN significantly enhances behavior 

prediction capabilities. By leveraging these techniques, AV’s 

can anticipate the behavior of surrounding entities and 

proactively take measures to avoid accidents, thereby 

improving road safety and navigation efficiency.  

The study by Wahyono et al. [37] proposes a novel traffic 

sign recognition system for autonomous vehicles (AVs) called 

the k-NCN classifier. This approach aims to improve upon 

traditional k-Nearest Neighbor (k-NN) methods by addressing 

their limitations in terms of space and time requirements. The 

k-NCN classifier first converts images to a format that 

emphasizes red and blue colors, which are commonly used in 

traffic signs. It then uses the Maximally Stable Extremal Region 

(MSER) method to identify potential traffic sign regions, 

filtering out regions with unusual aspect ratios. Candidate 

regions are resized and processed using Histogram of Oriented 
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Gradients (HOG) features to capture their shape information. 

To reduce processing time, the training data is grouped into 

smaller clusters using k-means clustering. A distance function 

that considers both the mean and variance of feature values is 

used to compare unknown signs with these clusters. The 

unknown sign is classified based on the nearest cluster. The 

study demonstrates the effectiveness of the k-NCN classifier 

through evaluations on the German Traffic Sign Recognition 

(GTSR) database. The classifier achieves competitive 

classification rates while significantly reducing processing time 

compared to traditional k-NN. Additionally, implementation on 

real-world video data collected from an AV shows high 

detection and recognition rates, with a detection rate of 98.07%, 

recognition rate of 99.54%, and an average frame rate of 25 

frames per second. The study demonstrates the effectiveness of 

the k-NCN classifier for real-time traffic sign recognition in 

autonomous vehicles. It achieves high detection and 

recognition rates while maintaining a fast processing speed.\ 

 

B. Deep Learning Approaches 

1) Convolutional Neural Networks (CNNs) 

CNNs are advanced algorithms primarily used for tasks like 

image recognition. In AV’s, they analyze visual data from 

sensors to understand the environment. By extracting patterns, 

CNNs help AV’s predict movements of nearby objects, 

enhancing safety on roads. Thus, CNNs are crucial for 

improving AV’s' perception and decision-making abilities 

Mohammad Yahya et al. [38] propose a novel method for 

object detection and recognition in autonomous vehicles, 

leveraging the power of deep learning as shown in Fig. 4. Their 

approach employs Fast R-CNN to accurately identify objects 

like cars, pedestrians, and traffic signs, thereby enhancing 

safety and driving assistance. To train their model, the 

researchers utilized the KITTI dataset and implemented data 

augmentation techniques to improve its generalization 

capability (prevent overfitting). Feature extraction was 

achieved using Gray-Level Co-occurrence Matrix (GLCM) for 

textural features and ResNet-50 for high-level features. 

Additionally, they employed Attention-guided Context Feature 

Pyramid Network (ACFPN) to effectively combine features 

from different levels, addressing challenges related to receptive 

field size and feature map resolution. For object detection and 

recognition, the Fast R-CNN approach was utilized, which 

selectively processes relevant regions, improving efficiency 

and providing accurate bounding boxes. 

 

 
Fig. 4. Block Diagram for The Proposed Approach 

 

The proposed method demonstrated superior performance 

compared to existing techniques like ShuffYOLOX, 

MobileYOLO, and S-DAYOLO in terms of Mean Average 

Precision (mAP), Model Complexity (Params), FLOPs, and 

Frames Per Second (FPS). Overall, this research proposes a 

promising approach for object detection and recognition in 

autonomous vehicles using Fast R-CNN and feature fusion 

techniques. The achieved high mAP and efficient model 

performance make it a valuable contribution to the field of 

autonomous driving.  

Jung et al. [39] propose a system for real-time semantic 

segmentation in autonomous vehicles, utilizing a compressed 

CNN architecture and an energy-efficient hardware accelerator. 

The Depth-fused Trilateral Network (DTN), a compressed 

CNN architecture, leverages depth information and techniques 

such as dilated convolution and depthwise separable 

convolution to reduce network complexity. Notably, the DTN 

achieves a remarkable 94.73% accuracy on the KITTI Road 

dataset, significantly surpassing existing methods while 

reducing parameters and computation costs. To complement the 

DTN, the study introduces an energy-efficient CNN 

accelerator. This accelerator supports a variety of convolution 

operations, including pointwise, standard, depthwise separable, 

dilated, and transposed convolutions. By employing techniques 

like the dual-mode IFmap Holder and data path management, 

the accelerator enhances efficiency and achieves high 

throughput while consuming low power. Performance 

evaluations demonstrate the effectiveness of the combined 

system. The DTN's exceptional accuracy, coupled with the 

accelerator's energy efficiency, enables real-time semantic 

segmentation at impressive rates: 72.2 FPS for road 

segmentation and 37 FPS for multi-object segmentation. 

Overall, this work contributes to the development of real-time 

and low-power perception systems for autonomous vehicles. 

O. Sharma et al. [40].  propose a novel CNN-STA-TF deep 

learning network for predicting the trajectory of autonomous 

vehicles on multi-lane highways. In this study, CNNs are used 

to analyze and understand the historical trajectories of vehicles. 

CNNs are designed to process and learn from image data, but 

they can also be adapted to handle time-based data like vehicle 

trajectories. The CNNs are used to extract features from the 

input data, such as relative positions, lane changes, and velocity 

changes. The proposed model achieves superior performance 

compared to existing RNN-based models in terms of accuracy 

and efficiency. The CNN-STA-TF model achieves a 10% 

reduction in Root Mean Square Error (RMSE) for predicting 

trajectories over a 5-second duration compared to state-of-the-

art models. The model utilizes a Transformer-based encoder, 

which processes the entire input sequence at once, leading to 

faster prediction compared to RNN-based models that process 

data sequentially. The spatial attention network effectively 

captures the interactions between the target vehicle and its 

surrounding vehicles, leading to more accurate trajectory 

predictions. Overall, the study demonstrates the effectiveness 

of the CNN-STA-TF model for trajectory prediction of 

autonomous vehicles on multi-lane highways. This model has 

the potential to improve the safety and efficiency of 

autonomous driving systems. 

2) Long Short-Term Memory Neural Networks (LSTMs) 

LSTMs are neural networks designed for analyzing 

sequential data. LSTMs are also crucial for predicting behaviors 

in AV’s. By analyzing sensor data, they anticipate the actions 
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of nearby vehicles and pedestrians, enabling AV’s to make 

informed decisions for safe navigation. Thus, LSTMs enhance 

AV’s perception and decision-making abilities, contributing to 

improved road safety. 

S. Qiao et al. [41] introduces a novel vehicle trajectory 

prediction model named AS-LSTM. This model effectively 

predicts future vehicle trajectories by leveraging social 

interactions and self-attention mechanisms. AS-LSTM takes 

historical trajectory data of surrounding vehicles as input, 

including their positions, velocities, and accelerations. The 

model processes this data using an LSTM encoder to capture 

temporal patterns, a self-attention mechanism to focus on 

relevant information, and an S-Pooling layer to understand 

vehicle interactions. Finally, the model decodes this processed 

information to predict the target vehicle's future trajectory. The 

AS-LSTM model, as described in the paper, demonstrates 

significant performance improvements in vehicle trajectory 

prediction compared to existing methods. This is primarily due 

to the incorporation of social interaction and self-attention 

mechanisms. The AS-LSTM model consistently achieved 

lower RMSE values across different prediction horizons (1s-5s) 

on both the NGSIM and HighD datasets. This indicates that the 

model's predictions were closer to the actual trajectories, 

demonstrating improved accuracy. The AS-LSTM model 

outperformed other models in predicting both horizontal and 

vertical positions. This suggests that the model was able to 

accurately capture the complex interactions between vehicles 

and the nuances of their movements in both longitudinal and 

lateral directions. Ablation studies revealed that both the self-

attention mechanism and the S-Pooling layer contributed 

significantly to the model's performance. When used 

individually, these components reduced errors by 53% and 

44%, respectively. Combined, they achieved a 39% error 

reduction. The S-Pooling layer, which captures social 

interactions, further enhanced the model's accuracy by 26% 

compared to using only the attention mechanism. This 

highlights the importance of considering vehicle interactions 

for accurate trajectory prediction. Overall, the AS-LSTM model 

demonstrates superior performance due to its ability to capture 

social interactions, where the s-pooling layer effectively models 

the influence of surrounding vehicles on the target vehicle's 

trajectory.  

The research by Alsanwy et al. [42] investigated how well 

LSTM networks can predict motion signals in driving 

simulators. LSTMs are fed past vehicle data like acceleration, 

steering angle, and road conditions. The network then learns 

patterns from this data and predicts future motion signals. This 

method outperforms traditional Recurrent Neural Networks 

(RNNs) in terms of accuracy. LSTMs achieve a lower average 

error (RMSE) of 0.127 compared to RNNs at 0.149. Similarly, 

LSTMs have a lower average error rate (MAE) of 19.04% 

compared to RNNs at 26.0%. Finally, LSTMs show a stronger 

correlation (0.83) between predicted and actual values 

compared to RNNs (0.80). By demonstrating the superiority of 

LSTMs over RNNs in predicting motion signals, the study 

provides strong evidence for the potential of LSTMs to be used 

as a core component of autonomous driving systems. 

The study by N. F. S. et al. [43] proposes an LSTM-based 

approach for autonomous vehicles to navigate highway 

merging safely. The researchers gathered data from two expert 

drivers performing highway merging maneuvers in a driving 

simulator. This data included various features like the vehicle's 

position, orientation, speed, and steering wheel angle. Five key 

features were selected to train the LSTM: longitudinal position, 

lateral position, yaw angle (vehicle's rotation), speed, and 

lateral distance to the highway guardrail. The network was 

trained to predict the optimal steering wheel angle for each time 

step based on the input features. The trained LSTM network 

acts as an "expert driver model." It takes real-time vehicle data 

as input and outputs the predicted steering angle. A PD 

controller uses this predicted angle as a reference to adjust the 

actual steering wheel angle of the vehicle in the simulator. The 

PD controller calculates the error between the desired and 

actual angles and applies proportional and derivative control to 

minimize this error. The system using the LSTM model 

successfully completed highway merging maneuvers in the 

simulator. It achieved an R-squared score of 0.82, indicating a 

strong correlation between the predicted and actual steering 

angles. The vehicle's trajectory closely resembled those of the 

expert drivers, demonstrating the ability to mimic their 

behavior. Advantages of using LSTM include mimicking 

expert drivers and handling complex maneuvers. 

3) Graph Neural Network (GNNs) 

GNNs are specialized neural networks that operate on graph-

structured data. They analyze relationships between nodes and 

edges in a graph, enabling them to capture complex 

dependencies. In AV’s, GNNs model interactions between 

vehicles, pedestrians, and objects on the road as a graph. By 

leveraging this structure, GNNs can predict future behaviors, 

enhancing AV navigation and safety. 

In this research, Y. Wang et al. [44] focus on addressing the 

challenges associated with agent trajectory prediction in 

complex traffic scenarios. The authors aim to improve the 

accuracy of trajectory prediction while maintaining 

computational efficiency, essential for real-time applications in 

AV’s. To achieve this goal, the authors propose VIF-GNN, a 

novel trajectory prediction framework that integrates the 

Virtual Interaction Force (VIF) concept with Graph Neural 

Networks (GNN). The VIF-GNN model uses a graph neural 

network (GNN) to capture the interactions between agents and 

lanes in a traffic scene. It first extracts features from raw data 

like location, velocity, and lane information. Then, it uses a 

subgraph encoder to transform these features into a format 

suitable for GNNs. Next, the global graph network, consisting 

of four attention layers, models various types of interactions: 

lane-lane, lane-agent, agent-agent, and global. Finally, the 

multi-modal decoder translates the learned graph representation 

into multiple possible future trajectories for the target agent.. 

Through extensive experiment VIF-GNN outperforms baseline 

models in both single and multi-modal trajectory prediction 

tasks. This is evident from achieving lower minimum Average 

Displacement Error (minADE) and minimum Final 

Displacement Error (minFDE) compared to LSTM, 

Transformer, VectorNet, TNT, and GOHOME models. VIF-

GNN demonstrates the potential of using GNNs with VIF for 

accurate and efficient agent trajectory prediction in traffic 
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scenarios. This can be crucial for autonomous vehicles to 

understand their environment and make safe decisions. 

N. Pourjafari et al. [45] focus on addressing the critical 

challenge of collision avoidance at unsignalized intersections 

for AV’s. The algorithm, executed in three sequential steps, 

utilizes LSTM and GNN models to predict vehicle trajectories, 

estimate safe traversal time windows, and calculate acceleration 

values to ensure safe passage through collision points while 

avoiding dangerous situations. The results presented in the 

paper demonstrate the effectiveness of the proposed algorithm 

through both qualitative and quantitative analyses. 

Qualitatively, the algorithm is shown to promote cautious 

driving behavior in AV’s, even surpassing human-driven cars 

in certain scenarios. Through visualization and evaluation of 

four distinct intersection scenarios, the algorithm's ability to 

consider both immediate and subsequent collision points is 

highlighted. Quantitatively, the performance of the algorithm is 

evaluated using real-world data from the INTERACTION 

dataset. The future behavior predictor achieved an accuracy of 

90.5%, outperforming the alternative approach which achieved 

88%. Additionally, the algorithm was tested on 250 real-world 

scenarios, and the self-driving vehicle safely passed the 

intersection in all cases. These findings collectively 

demonstrate the effectiveness of the proposed algorithm and its 

potential to significantly improve the safety of autonomous 

vehicles at unsignalized intersections. 

4) Double Deep Q Network (DDQN) 

DDQN is an enhancement of the Deep Q-Network (DQN) 

algorithm used in reinforcement learning. It addresses the 

overestimation bias issue present in traditional Q-learning 

methods. By addressing the overestimation bias inherent in 

traditional Q-learning methods, DDQN provides more accurate 

estimations of action values. With DDQN, AV’s can better 

anticipate and respond to dynamic traffic scenarios, ultimately 

improving their ability to navigate safely and efficiently. 

The study conducted by X. Zhang et al. [46] resulted in the 

development of a hybrid DDQN model for AV lane-changing 

decisions. Their model demonstrated significant improvements 

over traditional DQN models, achieving higher success rates, 

better average rewards, and maintaining robust performance 

under varying traffic conditions. The training phase showcased 

the DDQN model's superiority in lane change decision-making, 

with success rates of 87.52%, 84.48%, and 81.43% for DDQN, 

DQN, and traditional DQN, respectively, underscoring its 

effectiveness over traditional DQN methods. Furthermore, 

analysis of average reward distribution revealed the DDQN 

model consistently outperformed its counterparts, achieving the 

highest average reward of 10.31 between rounds 2001 to 4000. 

In testing scenarios, the DDQN model continued to excel. In 

Scenario One, it exhibited a 0.9% and 3.6% higher success rate 

compared to DDQN and DQN, respectively, alongside superior 

average rewards, cumulative steps, and average speed, 

indicating enhanced decision-making and exploration 

capabilities. Similarly, in Scenario Two, despite increased 

traffic volume and adjusted parameters, the DDQN model 

maintained its superiority, achieving an 11.2% and 3.8% higher 

success rate compared to DDQN and DQN, respectively. These 

results highlighted the DDQN model's robustness and stability 

across diverse scenarios. Overall, the DDQN model 

consistently outperformed DDQN and DQN in terms of average 

success rate and reward in both scenarios, highlighting its 

efficacy in varying road conditions and traffic scenarios.  

M. Dhinakaran et al. [47]  aims to enhance the intelligence 

and decision-making capabilities of AV’s through sophisticated 

algorithmic approaches. The research evaluates the 

performance of various DRL algorithms, including Deep Q-

Networks (DQN), Proximal Policy Optimization (PPO), and 

Trust Region Policy Optimization (TRPO). Notably, PPO 

demonstrates the highest success rate among the evaluated 

algorithms, achieving an impressive 82.6%. The study 

highlights the significant impact of optimization factors such as 

parameter tuning, exploration-exploitation balance, and reward 

shaping on navigation success. Parameter tuning emerges as a 

critical factor, substantially improving the success rate to 

87.4%. Furthermore, the research emphasizes the importance of 

transfer learning in enhancing adaptability, with a remarkable 

generalization score of 92.3%. Safety modules are also 

implemented to enhance overall safety scores by 18.7%. These 

findings highlight the significance of algorithm selection and 

parameter optimization in optimizing navigation for AV’s, 

providing valuable insights for future advancements in the field.  

IV. DISCUSSIONS 

A. Model-Related Challenges of Machine Learning in 

Autonomous Vehicles 

While Support Vector Machines (SVMs), Random Forests, 

and k-Nearest Cluster Neighbor (k-NCN) offer promising 

approaches for AVs, each faces specific challenges that need to 

be addressed for successful implementation. 

SVMs, while powerful tools for classification tasks, face 

several challenges when applied to AVs. In terms of data 

quality and quantity, the performance of SVMs heavily relies 

on the quality and quantity of training data. Real-world driving 

scenarios are diverse and complex, making it difficult to collect 

comprehensive datasets that cover all potential situations. For 

example, the NGSIM dataset used in [33] may not capture all 

possible driving scenarios, limiting the model's ability to 

generalize to unseen situations. In terms feature engineering, 

selecting and engineering relevant features is crucial for SVM 

performance. While the papers in [33], [34] mentioned using 

features like vehicle trajectory data, speed, acceleration, and 

distance to road markings, there may be other relevant features 

that were not considered. For instance, the presence of other 

vehicles in the blind spot or the driver's experience level could 

also influence lane change decisions. Furthermore, training and 

deploying SVMs on resource-constrained devices, such as AVs, 

can be computationally intensive. In real-time applications like 

lane change prediction, the SVM model may need to process a 

large amount of data and make predictions at high frequency, 

which can be challenging on devices with limited processing 

power. Addressing these challenges is crucial for the successful 

deployment of SVM-based solutions in autonomous vehicles. 

By carefully considering data quality, feature engineering and 
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computational efficiency, researchers can develop more reliable 

and effective models for AV applications. 

The study by X. Gu et al. [36] encountered several challenges 

when using Random Forest for lane change prediction. These 

challenges included data quality issues, such as noise and 

inconsistencies in the NGSIM dataset, and limited variety in the 

driving scenarios captured. Feature engineering also posed 

difficulties, as identifying the most relevant features and 

capturing complex feature interactions was challenging. 

Additionally, the risk of overfitting due to the complexity of 

Random Forest models and the need for balanced training data 

were concerns. Computational efficiency was another 

limitation, as training a large Random Forest model can be 

computationally expensive. Finally, the black box nature of 

Random Forest models made it difficult to understand the exact 

reasoning behind their predictions, which can be a challenge in 

safety-critical applications. Despite these challenges, the study 

successfully demonstrated the effectiveness of Random Forest 

for this task, highlighting its potential for use in autonomous 

vehicles. 

k-NCN tackles pattern recognition tasks by grouping similar 

data points. However, as the number of features 

(dimensionality) increases, the curse of dimensionality can 

make it difficult for k-NCN to find meaningful relationships 

between data points. This can lead to degraded performance and 

increased computational cost. Techniques like Principal 

Component Analysis (PCA) can be used to reduce 

dimensionality, but this comes at the expense of losing some 

information. Moreover, k-NCN is sensitive to noise in the data, 

particularly if it affects the key features used for classification. 

Choosing the right features plays a crucial role in achieving 

accurate results. Noise reduction techniques like filtering can 

help mitigate the impact of noise on k-NCN's performance. 

By recognizing these challenges and employing appropriate 

mitigation strategies such as data preprocessing, feature 

engineering, and careful model selection, we can harness the 

strengths of these machine learning algorithms and ensure the 

reliability and performance of AV systems. 

 

B. Model-Related Challenges of Deep Learning in 

Autonomous Vehicles 

Deep learning approaches like Convolutional Neural 

Networks (CNNs), Long Short-Term Memory (LSTMs), Graph 

Neural Networks (GNNs), and Deep Q-Networks (DQNs) offer 

significant promise. However, despite their strengths, deep 

learning approaches for autonomous vehicles face several 

challenges. 

CNNs are well-suited for tasks like image recognition and 

object detection. However, they can be computationally 

expensive, especially for real-time processing in autonomous 

vehicles. Additionally, they require large amounts of labeled 

data and may struggle to generalize to new environments. For 

instance, the computational complexity of the model, due to the 

use of ResNet-50 and ACFPN, can limit real-time performance 

and increase power consumption [38]. Additionally, the model 

may struggle to generalize to new environments and could be 

vulnerable to adversarial attacks. Other than that, the CNN-

STA-TF model, while efficient compared to RNN-based 

models, may still be computationally intensive, especially for 

real-time applications [40], due to the following factors such as 

the Transformer-based encoder used in the model processes the 

entire input sequence at once, which can be computationally 

demanding, especially for long input sequences, the spatial 

attention network, which captures interactions between the 

target vehicle and its surrounding vehicles, can also contribute 

to computational complexity, the CNN component of the model 

may still require significant computational resources for feature 

extraction, especially if it uses complex architectures, and 

autonomous vehicles often have strict real-time requirements, 

and the CNN-STA-TF model may need to be optimized further 

to meet these constraints. While the model demonstrates 

superior performance in terms of accuracy and efficiency 

compared to RNN-based models, it may still require specialized 

hardware or optimization techniques to ensure it can be 

deployed in real-time applications. 

LSTM networks are effective for capturing long-term 

dependencies in sequential data. However, they can be 

computationally expensive and may suffer from the vanishing 

gradient problem. In autonomous vehicles, capturing long-term 

dependencies is crucial for understanding traffic patterns and 

predicting future vehicle behavior. For example, the 

computational complexity of the model proposed by S. Qiao et 

al. [41], due to the use of LSTMs, self-attention, and S-Pooling, 

can limit real-time performance and increase power 

consumption. 

GNNs are designed to process graph-structured data, which 

can be useful for modeling the interactions between 

autonomous vehicles and other objects in their environment. 

However, constructing accurate and meaningful graphs can be 

challenging, and GNNs can become computationally expensive 

as the size of the graph increases. For ezample, the 

computational complexity of the proposed VIF-GNN model is 

primarily influenced by the following factors: Graph Size: The 

number of agents and lanes in the traffic scene directly affects 

the size of the graph, which in turn impacts the computational 

cost of the GNN. Larger graphs require more computations; 

GNN Architecture: The depth and width of the GNN layers 

determine the number of parameters and operations involved. 

Deeper and wider networks generally require more 

computational resources; VIF Calculation: The calculation of 

Virtual Interaction Forces involves computing pairwise 

distances and interactions between agents and lanes, which can 

be computationally expensive for large numbers of agents; and 

Feature Extraction: Extracting features from raw data can also 

contribute to the computational cost, especially if complex 

feature extraction techniques are used. To ensure both 

computational efficiency, researchers must carefully consider 

these factors when designing and training trajectory prediction 

models for autonomous vehicles. 

Deep Q-Networks DQNs are a type of reinforcement 

learning algorithm that can be used for decision-making in 

autonomous vehicles. However, they can suffer from the 

overestimation bias and may be limited to discrete action 

spaces. Balancing exploration and exploitation is also a critical 

challenge in DQN-based learning. The DDQN model, 

introduced in [46], aims to address some of the limitations of 

traditional DQNs. While it offers improvements in terms of 

performance, it also comes with its own challenges. The DDQN 

model is generally more complex than traditional DQNs, 
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requiring more computational resources and training time. 

There is also a risk of overfitting, where the model becomes 

overly specialized to the training data and struggles to 

generalize to new, unseen data. Moreover, the DDQN model's 

ability to generalize to new environments, particularly in 

rapidly changing traffic conditions, might be limited. Overall, 

while DQN and DDQN models show promise for AV lane-

changing decisions, addressing the challenges associated with 

these techniques, such as overestimation bias, discrete action 

spaces, exploration-exploitation balance, complexity, 

generalization, data scarcity, and safety, is crucial for their 

successful deployment in real-world applications. 

To address these challenges, researchers must focus on data 

augmentation, developing more efficient deep learning 

architectures, adversarial training, improving graph 

construction techniques, advancing reinforcement learning 

algorithms, utilizing hardware acceleration, and developing 

frameworks for safety and ethics in autonomous vehicles. 

V. CONCLUSION 

AI integration in AV’s offers significant potential to enhance 

road safety in mixed traffic environments. This review 

examined various AI techniques for behavior prediction, 

including machine learning methods like Support Vector 

Machines (SVMs) and Random Forests, and deep learning 

techniques such as Convolutional Neural Networks (CNNs), 

Long Short-Term Memory Networks (LSTMs), Graph Neural 

Networks (GNNs), and Double Deep Q Networks (DDQNs). 

These approaches improve AV’s' ability to predict and adapt to 

diverse road user behaviors, enhancing decision-making and 

safety. Machine learning models like SVMs and Random 

Forests provide robust frameworks for predicting driving 

intentions. Deep learning methods, including CNNs and 

LSTMs, help analyze complex data for better response to 

dynamic traffic scenarios. GNNs and DDQNs further advance 

decision-making under uncertainty. Despite these 

advancements, human behavior's complexity and 

unpredictability pose ongoing challenges. Future research 

should incorporate multidisciplinary approaches and real-time 

data processing to improve prediction accuracy. Overall, AI-

driven AV technology shows promise in reducing road traffic 

accidents and enhancing safety. 
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