

COMPARATIVE STUDY OF DIFFERENT WATER FLOWRATES OF VARIOUS WORKING FLUIDS ON A COOLING TOWER

MUHAMMAD DANNY HAFIZ BIN NOOR HAZLY

Dissertation submitted in partial fulfillment of the requirements for the degree of **Diploma in Mechanical Engineering**

College of Engineering

January 2024

ABSTRACT

Usage of cooling tower in this experiment will be conducted to determine the mass and energy balance on the cooling tower system and to analyse the effects of the process variables or parameters on the exit temperature of the water. In this experiment, there are several parameters that will be adjusted in order to observe its effects on the evaporation of water for the cooling tower system. The parameters are the water flow rate and the blower condition. The experiment will be carried out with two different cooling liquids which are water and coolant with 10% concentration. Each experiment will be set at constant heater power, 1.0KW, air flow rate at 20 mmH₂O, area of orifice at 20mm, use hot water at 50°C, and various liquid flow rate at ranges of 1.0 LPM to 3.5 LPM at 0.5 interval. This experiment show that cooling tower that use coolant as their cooling liquid is more efficient than water. For the water flowrate we can conclude that the lower water flowrate is more efficient than higher water flowrate.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my diploma and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor, Mr. Helmisyah bin Ahmad Jalaludin.

Finally, this dissertation is dedicated to my father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah's.

TABLE OF CONTENTS

			PAGE			
	ABS	5				
	TAB]	TABLE OF CONTENTS				
1.0	СНА					
	1.1	Background of Study	9			
	1.2	Problem Statement	11			
	1.3	Objectives	11			
	1.4	Scope of Limitation	12			
	1.5	Significance of Study	12			
2.0	CHA					
	2.1	Cooling tower	13			
	2.2	How do cooling towers work?	15			
		2.3.1 Air-conditioning and cooling tower	16			
		2.3.2 Mechanical draft cooling tower	18			
		2.3.3 Working fluids	20			
	2.3	Heat exchange process	20			
		2.2.1 Heat exchanger device	21			
		2.2.2 Regenerative	22			
		2.2.3 Recuperative	23			

	2.4	Parameters Affecting the Efficiency of Cooling Tower						
		2.4.1	A Good	Condition of Cooling Tower	24			
		2.4.2	Air Velo	city	25			
		2.4.3	As Working Fluids		25			
		2.4.4	2.4.4 Radiator Coolant as Cooling Medium		26			
			2.4.4.1	Radiator	26			
			2.4.4.2	Concentration of the coolant	27			
			2.4.4.3	Mass flow rate of the coolant	27			
3.0	CHAPTER 3: METHODOLOGY							
	3.1	Introduction						
	3.2	Flowchart						
	3.3	Sample preparation						
	3.4	Experimental setup						
	3.5	Prove of experiment process						
	3.6	Calculation						
	3.5	Gantt c	hart		36			
4.0	CHAPTER 4: RESULT AND DISCUSSION							
	4.1	Result			37			
	4.2	Discus	sion		38			
5.0	CHAPTER 5: CONCLUSION AND RECOMMENDATIO							
	5.1	Conclu	sion		39			
	5.2	Recom	mendatior	1	40			
6.0	REFERENCE							
	APPENDICES							