UNIVERSITI TEKNOLOGI MARA

MALAY FISHING BOAT IMPROVEMENT: HULL DESIGN AND STABILITY ANALYSIS

RAZIQ SYAHMI BIN MOHD. ROHAILAN

Dissertation submitted in partial fulfillment of the requirements for the degree of **Diploma in Mechanical Engineering**

College of Engineering

December 2023

ABSTRACT

The purse seiner Malay fishing boat is a vessel that plays a vital role in the coastal fishing communities of Southeast Asia. The project's primary objective is to create a suitable hull design for new Malay fishing boats, and concurrently, to analyze the hull stability. The problem with the current purse seiner boat is because of outdated material and the Deck house placement problem. The scope of work for this project will cover 3D hull design work, lines plan creation, hydrostatic data, and general arrangement. Then, for the stability work it will cover for both lightship and full load conditions in work area of initial stability, GZ curve (large angle stability) and Trim Analysis. This project contribute to the long-term sustainability and success of the fishing industry while ensuring the boats can withstand the challenges of the marine environment. The methodology is by creating the new hull design and analyze the hull hydrostatic data. For stability assessment finding the total weight, Longitudinal Center of Gravity (LCG), and Vertical Center of Gravity (VCG) by doing the weight estimation works. Initial stability analysis will help in finding the Metacentric height (GM) value. Then, GZ Curve graph to find the maximum angle of heel for both lightship and full load conditions. Trim calculation to find the trim of the ship in lightship and full load condition whether it will trim by the bow or trim by the stern of the ship. The result achieved within this project is suitable 3D hull design with 25.5m length, 5.8m Breadth and 4m depth and hydrostatic data at design waterline and at various draft. The detailed lines plan of the hull with waterlines, stations, buttocks lines and baseline. The general arrangement that is suitable for the ship with all detailed list of items weight on the ship and optimal ship Longitudinal Center of Gravity (LCG) which is 13.789m (Lightship), 12.502m (Full Load) and Vertical Center of Gravity (VCG) which is 2.48m (Lightship), 2.323m (Full Load). Then for initial stability analysis, the metacentric height obtained in positive value and located above the center of gravity of the ship for both lightship and full load conditions with the value 1.242m and 1.323m. GZ Curve shows that both load cases exceed the IMO standards with Max GZ value of 0.545m at 51.8 degree (Lightship) and 0.641m at 54.5 degree (Full Load); it can be concluded that it meets the predetermined conditions. For trim analysis the result is that both conditions will trim down at the bow with the trim value of 170.105cm (Lightship) and 92.268cm (Full Load).

ACKNOWLEDGEMENTS

Praise be to Allah S.W.T. for giving me the opportunity and giving me the time, energy, and health I needed to begin my diploma program and complete this long and drawn-out journey. I want to express my gratitude to the faculty Mechanical Engineering for providing me with the opportunity to enroll in MEC300, Final Year Project II, as a requirement for the diploma program. My supervisor, Sir Azahari Bin Johan, has my sincere gratitude for all his counsel, assistance, tolerance, encouragement, and support during the difficult time it took to complete this project.

Furthermore, I would like to thank our coordinator for the senior project, Dr. Shukriah Abdullah and Miss Nur Ain Abdul Rahman, for they commitment and diligence in organizing the required lectures and seminars so that the students could comprehend and understand the important information for our research. They also genuinely assisted the panels, students, and supervisors in making sure the course went without any problems.

In addition, I thanked my family and others for supporting me in my research, especially with the questionnaire. I expressed my gratitude to my parents for helping to provide the resources I required to finish the course project.

TABLE OF CONTENT

CONFIRMATION BY SUPERVISOR	11
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	V
TABLE OF CONTENT	vi
LIST OF FIGURES	vii
LIST OF TABLES	ix
1 INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	4
1.3 Objectives	4
1.4 Scope of Work	4
1.5 Significance of the study	5
2 LITERATURE REVIEW	7
2.1 Project Background	7
2.2 Theoretical Framework	9
2.2.1 Hull Design and Materials	9
2.2.2 Initial Stability	18
2.2.3 Trim and Heels	19
3 METHODOLOGY	23
3.1 Flow chart	23
3.2 Methods of collecting data	24
3.3 Method of analysis	32
4 RESULTS AND DISCUSSIONS	37
4.1 Lines Plan and Hydrostatic	37
4.2 General Arrangements and Weight Estimation	44
4.3 Ship Stability Calculations	55
5 CONCLUSION	67
5.1 Conclusions	67
5.2 Recommendations	69
REFERENCES	70
APPENDIX A	75
APPENDIX B	77
APPENDIX C	81

LIST OF FIGURE

Figure 1.1: Current Wooden Purse Seine Boat	2
Figure 1.2: Damaged Wooden Hull Structure	3
Figure 1.3: Field of naval architecture organization in Malaysia	6
Figure 2.1: Example of Hydrostatic Data	11
Figure 2.2: Lines plan of Malay fishing boat	12
Figure 2.3: Recaulking process	14
Figure 2.4: Cracks wooden hull	14
Figure 2.5: Pre-impregnated (pre-preg) cloth	16
Figure 2.6: CSM consists of randomly oriented fibers	17
Figure 2.7: Trim by the Bow/Stern	19
Figure 2.8: GZ Curve Explanation	21
Figure 2.9: Curve Graph for flat hull ship	22
Figure 3.1: Flow Chart	23
Figure 3.2: Process of Designing Malay Fishing Boat Hull in Rhino	24
Figure 3.3: Lines plan Template Title Block A3	24
Figure 3.4: The 3D Design Of Fishing Boat General Arrangements In Rhino Software	25
Figure 3.5: The 3D Design Of Fishing Boat General Arrangements In Rhino Software	25
Figure 3.6: The 3D Design Of Fishing Boat General Arrangements In Rhino Software	25
Figure 3.7: List Of Item On The Ship For General Arrangements And Weight Estimations	26
Figure 3.8: Steps to obtain volume from Rhino Software	28
Figure 3.9: Purse Seine winch approximate weight	28
Figure 3.10: Fiberglass-Coated Parts	29
Figure 3.11: GZ Curve graph in Maxsurf stability	31
Figure 3.12: Hull Displacement in Maxsurf Stability	32
Figure 3.13: Draft Range for Hydrostatic Data	33
Figure 4.1: Perspective View of 3D Hull (Shaded)	38
Figure 4.2: Top View of 3D Hull (Shaded)	38
Figure 4.3: Front View of 3D Hull (Shaded)	38
Figure 4.4: Right View of 3D Hull (Shaded)	39
Figure 4.5: Perspective View of 3D Hull (Rendered)	39
Figure 4.6: Top View of 3D Hull (Rendered)	39
Figure 4.7: Front View of 3D Hull (Rendered)	40
Figure 4.8: Right View of 3D Hull (Rendered)	40
Figure 4.9: Perspective View of 3D Hull and Deck (Shaded)	40
Figure 4.10: Perspective View of 3D Hull and Deck (Rendered)	41
Figure 4.11: Lines Plan for Malay Fishing Boat	42
Figure 4.12: Overall 2D Drawing General Arrangement	44
Figure 4.13: 3D View of overall General Arrangement (Shaded)	45
Figure 4.14: List of item on the ship (Lightship)	45
Figure 4.15: List of item on the ship (Full Load)	45
Figure 4.16: 3D view of Hull	47
Figure 4.17: 3D view of Deck	47