
1 | P a g e

I²C INTERFACE CONTROLLER FOR
TEMPERATURE DATA LOGGER

Mohd Shahrul Azree Bin Remly

Bachelor of Electronic Engineering (Hons.)
Faculty of Electrical Engineering

Universiti Teknologi Mara
40450 Shah Alam

Email:mohdshahrulazree@yahoo.com

Abstract: - This project covers two important parts which are
I²C (Inter-Integrated Circuit) and Temperature Data Logger
system. This report summarizes the design of I2C interface
controller for communication between the temperature sensor
and processor in the data logger system. I²C (Inter-Integrated
Circuit) is commonly used in serial protocols for data
transfers and its interface controller is developed in HDL
Verilog, and implemented on Xilinx’s Spartan FPGA
Development Board. It will be integrated with temperature
sensor to perform as a Temperature Data Logger.

Keywords— I²C (Inter-Integrated Circuit); Data Logger;
Serial Protocols, Xilinx’s FPGA;

I. INTRODUCTION
.

A data logger is used to record data over time or in
relation to location either with a built
in instrument or sensor or via external instruments and
sensors. Temperature data logger is one type of data logger
and it is needed in scientific, medical and industrial
applications [1]. The data loggers are based on a digital
processor (or computer) who utilizes software to activate
the system and analyze the collected data [2]. The
interfacing between the sensor and computer can be in any
protocols and it depends on the input and output circuit.
There are several protocol drivers for a processor to
communicate with any peripheral or devices such as
Parallel Peripheral Interface (PPI), Two wire
interface(TWI) which is also called I2C, Serial Peripheral
Interface (SPI), Serial Port (SPORT) and Universal
Asynchronous Receiver/Transmitter (UART). Among
these protocols, I2C requires only two I/O pins while others
require more pins and signals to connect devices. If the
applications consider simplicity and low manufacturing
cost more important than speed, then I2C is appropriate for
this kind of applications [3]. I²C is a two-wire, bi-
directional serial bus that provides a simple and efficient
method of data exchange between devices. The I²C system
uses a serial data line (SDA) and a serial clock line (SCL)
for data transfers.

This paper provides the design of I²C interface
controller which can be used in implementing the
temperature data logger using Xilinx Spartan Development
Board. The I²C kit is not available on Xilinx’s board, thus
it is a necessary if the data logger system to be designed,
requires I²C as its way of communication between the
sensor and a processor

The paper describes temperature data logger system in
section II, the proposed work in section III, results and
discussion in section IV and finally, the conclusion in
section V.

II. TEMPERATURE DATA LOGGER

The purpose of this project is to implement the
temperature data logger on Xilinx’s Spartan-3E Board.
The system will be implemented as shown in Figure 1
where it consists of the National Semiconductor’s LM75 as
the sensor circuit for the system, the FPGA as the processor
or controller and Character LCD is used as a display. This
configuration is chosen to minimize the hardware
requirements and to overcome the constant calibration need
of the analog temperature sensors. Even though the LM75
doesn’t have the greatest resolution or accuracy, it is
perfect for part-to-part replacement.

Figure 1: The Block Diagram of the Temperature Data

Logger

2 | P a g e

A. LM75:Digital Temperature Sensor and Thermal
Watchdog with I2C

 The LM75 is a temperature sensor, Delta-Sigma
analog-to digital converter, and digital over-temperature
detector with I²C interface [5]. The block diagram of LM75
is shown in Figure 2 and its pin description is tabulated in
Figure 3.

 Figure 2: Typical Application of LM75

Label Pin Function
SDA 1 I²C Serial Bi-Directional Data Line
SCL 2 I²C Clock Input

O.S 3 Over Temperature Shutdown Open

Collector Output
GND 4 Power Supply Ground
+Vs 8 Positive Supply Voltage Input
A0-
A2

7,6,5 User Set I²C Address Input

Figure 3: Pin Description

The LM75 sensors are connected to the I²C-bus with
the SDA, SCL and GND pins and to a power supply with
the +VS and GND pins. The address pins A2, A1 and A0
have to be connected to +VS or GND, setting the address
of the sensor. Each sensor on the bus needs a different
address for proper operation. The temperature data output
of the LM75 is available at all times via the I²C bus. If a
conversion is in progress, it will be stopped and restarted
after the read. The LM75 operates as a slave on the I²C bus,
so the SCL line is an input (no clock is generated by the
LM75) and the SDA line is a bi-directional serial data path.
According to I²C bus specifications, the LM75 has a 7-bit
slave address. The four most significant bits of the slave
address are hard wired inside the LM75 and are ``1001''.
The three least significant bits of the address are assigned
to pins A2-A0, and are set by connecting these pins to
ground for a low, (0); or to +VS for a high, (1).[5]

B. Temperature Data Format

Temperature data can be read from the Temperature, TOS
Set Point, and THYST Set Point registers; and written to
the TOS Set Point, and THYST Set Point registers.

Temperature data is represented by a 9-bit, two's
complement word with an LSB (Least Significant Bit)
equal to 0.5˚C:[5]

Temperature

Digital Output

Binary Hex

+125˚C 0 1111 1010 0FAh

+25˚C 0 0011 0010 032h

+0.5˚C 0 0000 0001 001h

0˚C 0 0000 0000 000h

-0.5˚C 1 1111 1111 1FFh

-25˚C 1 1100 1110 1CEh

-125˚C 1 10010010 192h

Table 1: Example of Temperature Data Format

C. I²C (Inter-Integrated Circuit)

 I²C uses only two bidirectional open-drain lines,
Serial Data Line (SDA) and Serial Clock (SCL), pulled
up with resistors. Typical voltages used are +5 V or +3.3 V
although systems with other voltages are permitted. The
I²C reference design has a 7-bit address space with 16
reserved addresses, so a maximum of 112 nodes can
communicate on the same bus. Figure 4 shows an
example of I2C configuration as a master or slaves in any
interfacing circuits.

Figure 4: A sample schematic with one master (a
microcontroller), three slave nodes (an ADC, a DAC, and a
microcontroller), and pull-up resistors Rp.

Data transfer is initiated with the START bit (S) when
SDA is pulled low while SCL stays high. Then, SDA sets
the transferred bit while SCL is low (blue) and the data is
sampled (received) when SCL rises (green). When the
transfer is complete, a STOP bit (P) is sent by releasing the
data line to allow it to be pulled up while SCL is constantly
high.

Figure 5: Timing Diagram

D. Xilinx FPGA
A Field-programmable Gate Array (FPGA) is an

integrated circuit designed to be configured by the
customer or designer after manufacturing—hence "field-

3 | P a g e

programmable"[4]. The FPGA configuration is typically
specified using a hardware description language (HDL),
similar to that used for an application-specific integrated
circuit (ASIC) (circuit diagrams were previously used to
specify the configuration, as they were for ASICs, but this
is increasingly rare). FPGAs can be used to implement any
logical function that an ASIC could perform. A recent
trend has been to take the coarse-grained architectural
approach a step further by combining the logic blocks and
interconnects of traditional FPGAs with embedded
microprocessors and related peripherals to form a complete
"system on a programmable chip". An alternate approach
to using hard-macro processors is to make use of soft
processor cores that are implemented within the FPGA
logic. The relatively low cost and easiness of
implementation and reprogramming of FF'GA's in
comparison with the custom VLSI technology offer
attractive features for the designer.

III. I2C INTERFACE CONTROLLER
I²C Protocols can be comprehended by knowing the

signals used in the interfacing technique as described
below:

A. START signal

When the bus is free/idle, meaning no master device
is engaging the bus (both SCL and SDA lines are high), a
master can initiate a transfer by sending a START signal. A
START signal, usually referred to as the S-bit, is defined as
a high-to-low transition of SDA while SCL is high. The
START signal denotes the beginning of a new data
transfer.
 A repeated START is a START signal without first
generating a STOP signal. The master uses this method to
communicate with another slave or the same slave in a
different transfer direction (e.g. from writing to a device to
reading from a device) without releasing the bus. The core
generates a START signal when the STA-bit in the
Command Register is set and the RD or WR bits are set.
Depending on the current status of the SCL line, a START
or Repeated START is generated.

B. Slave Address Transfer

The first byte of data transferred by the master
immediately after the START signal is the slave address.
This is a seven-bits calling address followed by a RW bit.
The RW bit signals the slave the data transfer direction. No
two slaves in the system can have the same address. Only
the slave with an address that matches the one transmitted
by the master will respond by returning an acknowledge bit
by pulling the SDA low at the 9th SCL clock cycle.

C. Data Transfer

 Once successful slave addressing has been achieved,
the data transfer can proceed on a byte-by-byte basis in the
direction specified by the RW bit sent by the master. Each
transferred byte is followed by an acknowledge bit on the
9th SCL clock cycle. If the slave signals a No

Acknowledge, the master can generate a STOP signal to
abort the data transfer or generate a Repeated START
signal and start a new transfer cycle.
If the master, as the receiving device, does not
acknowledge the slave, the slave releases the SDA line for
the master to generate a STOP or Repeated START signal.
To write data to a slave, store the data to be transmitted in
the Transmit Register and set the WR bit. To read data
from a slave, set the RD bit. During a transfer the core set
the
TIP flag, indicating that a Transfer is In Progress. When
the transfer is done the TIP flag is reset, the IF flag set and,
when enabled, an interrupt generated. The Receive Register
contains valid data after the IF flag has been set. The user
may issue a new write or read command when the TIP flag
is reset.

D. STOP signal

The master can terminate the communication by generating
a STOP signal. A STOP signal, usually referred to as the P-
bit, is defined as a low-to-high transition of SDA while
SCL is at logical ‘1’.[7]

E. Finite State Machine (FSM)

The controller which is the FSM is best described by its

state diagram. There are two type of command controller
in the system and they are known as byte or bit command
controller. The FSM for these controllers are shown in
Figure 6 and Figure 7, respectively.

Figure 6: state diagram for byte-controller

4 | P a g e

Figure 7: state diagram for bit-controller

Figure 8: Flowchart of whole process of project

Figure 9: Flowchart for byte-controller

5 | P a g e

Figure 10: I²C Controller

The internal structure of the I2C controller is shown in
Figure 8 where there are several registers and two
command controllers.

IV. RESULTS SIMULATION AND DISCUSSION

The FSM and the datapaths are designed using Verilog
code and to check for its functionality, a test bench with
fixed parameters is chosen and the parameters are circled in
Figure 11 and 12.

Figure 11: Simulation of I²C Controller

Figure 12: Simulation of I²C Controller

Figure 11 and 12 show the simulation result of I2C
controller with the parameter. Adr[31:] is a address bus,
used to select an internal register of the device for writing
to slave or reading from slave. For example, Figure 11
shows the value of adr[31:0] is ‘100’ which refers to the set
address for Command register and Status register. If ‘1’, it
will be read from the slave and if ‘0’, it will be written to
slave. Dat_i is data received from the host processor and
dat_o is a data to be sent to the host processor (Valid when
inta is asserted). The value of dat_i is ‘000010’ (Figure 11)
because these values present slaves memory address. Value
of ‘000000’ and ‘xxxxxx’ is representing address to send
the data to the host processor. For now, the controller does
not have a data to send to the host processor because the
controller is not interface with sensor, so that’s why it
displays this value at the simulation.

Write enable signal (we) are used to indicate whether the
current local bus cycle is a Read or Write cycle, ‘0’ is read
and ‘1’ is write. Stb (Strobe signal), are asserted when
indicates the start of a valid data transfer cycle. The value
of strobe signal is depends on value of cycle signal, valid
when HIGH (1). The cycle signal (cyc) is asserted when
indicates the start of a valid cycle. Valid when ‘1’ (HIGH).
Standard device acknowledgement signal (ack), when this
signal goes HIGH ‘1’, the Controller (Master Slave) has
finished execution of the requested action and the current
bus cycle is terminated. Interrupt Signal (inta), this line is
taken High if the input enable bit in the Control register is
set (CONTROL.1) and the interrupt request bit in the
Status register (STATUS.0) becomes set. The latter is set
by the Controller whenever it completes its current
operation.

Scl is serial clock input. Scl_0 is serial clock output and
Scl_oen is output enable signal for the I2C clock
bidirectional buffer. Serial clock input is high ‘1’ when
STOP signal is producing. Serial clock output always low
‘0’ for generate a START signal and polarity for output
enable signal for I2C clock bidirectional buffer is always
high ‘1’.

6 | P a g e

Serial data input (sda) is high ‘1’ when START signal are
generated. For serial data output is low ‘0’ when STOP
signal are producing and polarity for output enable signal
for I2C data bidirectional buffer is always high ‘1’. Master
clock (clk) is set always toggle and asynchronous active
low reset (rstn) is reset when high ‘1’.

The expected outputs are tabulated in Figure 13.

input Output
dat_i[7:0] 0x000010 dat_o[7:0] Xxxxxxxx
Scl_i 1 scl_o 0 (always

0)
 scl_oen 1 (active

low)
Sda_i 1 sda_o 0 (always

0)
 sda_oen 1 (active

low)
q[7:0] dat_i[7:0] qq[7:0] dat_o[7:0]

Figure 13: The expected outputs

dat_i: data input
dat_o: data ouput
scl_i: serial clock line input
scl_o: serial clock line output
scl_oen: serial clock line output enable
sda_i: serial data line input
sda_o: serial data line output
sda_oen: serial data line output enable
q: input data
qq: output data

The Byte Command Controller handles I2C traffic at the
byte level. It takes data from the Command Register and
translates it into sequences based on the transmission of a
single byte. By setting the START, STOP, and READ bit
in the Command Register, for example, the Byte Command
Controller generates a sequence that results in the
generation of a START signal, the reading of a byte from
the slave device, and the generation of a STOP signal. It
does this by dividing each byte operation into separate bit-
operations, which are then sent to the Bit Command
Controller.

The Bit Command Controller handles the actual
transmission of data and the generation of the specific
levels for START, Repeated START, and STOP signals by
controlling the SCL and SDA lines. The Byte Command
Controller tells the Bit Command Controller which
operation has to be performed. For a single byte read, the
Bit Command Controller receives 8 separate read
commands.

The DataIO Shift Register contains the data associated with
the current transfer. During a read action, data is shifted in
from the SDA line. After a byte has been read the contents
are copied into the Receive Register. During a write action,
the Transmit Register’s contents are copied into the DataIO
Shift Register and are then transmitted onto the SDA line.

V. CONCLUSION
As a conclusion, a controller for I2C interfacing method can
be implemented using Xilinx’s FPGA and it can be used as
interfacing technique for Temperature Logger System with
LM75 temperature sensor.

ACKNOWLEDGMENT

A special thank to my supervisor Dr. Azilah Saparon
and for her advice, support and guidance throughout this
research.

REFERENCES

[1] Kuchta, R.; Stefan, P.; Barton, Z.; Vrba, R.;
Sveda, M.; , "Wireless temperature data
logger," Sensors and the International Conference
on new Techniques in Pharmaceutical and
Biomedical Research, 2005 Asian Conference on ,
pp. 208- 212, 5-7 Sept. 2005.

[2] Petreus, D.; Juhos, Z.; Pitica, D.; "System in
Package for Temperature Logging," Electronics
Technology, 2006. ISSE '06. 29th International
Spring Seminar on, pp.309-312, 10-14 May 2006.

[3] Godi Fisches Sangmok Lee and Michael Obara,
“A Programmable Monolithic Temperature
Logging Device”: Department of Electrical &
Computer Engineering University of Rhode Island
Kingston, U.S.A, 2002.

[4] Kevin Roebuck, “FPGA Field-Programmable
Gate Array: High-impact Strategies - What You
Need to Know: Definitions, Adoptions, Impact,
Benefits, Maturity, Vendors” Published by Tebbo,
2011.

[5] LM75 Digital Temperature Sensor and Thermal
Watchdog with Two-Wire Interface, National
Semiconductor Corporation, June 1996

[6] Spartan-3E Starter Kit Board User
Guide,XILINX, 9 March 2006.

[7] Richard Herveille, “I2C-Master Core
Specification “, OpenCores, 3 July 2003.

	INTRODUCTION
	LM75:Digital Temperature Sensor and Thermal Watchdog with I2C
	Figure 5: Timing Diagram

	I2C INTERFACE CONTROLLER
	results Simulation and Discussion
	Conclusion
	Acknowledgment

