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 Early detection of brain abnormalities is vital for enhancing patient 
outcomes and survival rates. However, accurately identifying and 
segmenting these abnormalities from MRI images remains a persistent 
challenge. This study assesses the efficacy of the Selective Local Image 
Fitting (SLIF) model in segmenting brain abnormalities from colour 
MRI images and compares its performance with converted greyscale 
counterparts. The rationale behind this comparison stems from standard 
practice in image segmentation, where colour images are often 
converted to greyscale before the segmentation task. Converting the 
image might degrade data by diminishing its dimensions, potentially 
affecting segmentation computations. This study intends to evaluate the 
influence of colour information on segmentation accuracy and efficiency 
by directly assessing the SLIF model on both colour and converted 
greyscale images. Segmentation accuracy was evaluated using metrics 
such as the Dice Similarity Coefficient (DSC), Matthews Correlation 
Coefficient (MCC), and Intersection-over-Union (IoU). Efficiency was 
determined by measuring the average elapsed processing time.  
Experimental results demonstrate that colour MRI brain images 
outperform their converted greyscale counterparts in segmentation 
accuracy, as colour providing essential supplementary information for 
precise abnormality delineation. Despite a slight increase in average 
elapsed processing time for colour images, the enhanced accuracy 
justifies this trade-off. These findings emphasize the importance of 
colour MRI in enhancing diagnostic accuracy, especially in detecting 
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1. INTRODUCTION 

Significant breakthroughs have been made in combating various diseases due to recent advancesin 

biological research and human intelligence. However, cancer remains a substantial challenge because of its 

inherently unpredictable nature [1]. In 2022, the International Agency for Research on Cancer (IARC) 

reported 321,476 newly diagnosed cases of brain and neurological system cancer. This form of cancer was 

ranked nineteenth among all types of cancer in terms of occurrence. Furthermore, there were 248,305 

confirmed deaths globally, making brain and neurological system cancers the twelfth most prevalent cause 

of cancer-related deaths [2]. Brain abnormalities encompass deviations from typical brain function, 

structure or biochemical levels. They stem from various causes, such as genetic mutations, complications 

during childbirth, developmental disorders or trauma, exposure to harmful substances, and diseases 

affecting the mother or the developing fetus. These abnormalities are associated with conditions such as 

schizophrenia, autism, various types of brain tumours, alcohol addiction and dementia [3].  

Radiologists have employed a range of medical imaging techniques, such as X-ray, computed 

tomography (CT), magnetoencephalography, magnetic resonance imaging (MRI), electroencephalography, 

ultrasound, and positron emission tomographic (PET), to identify and analyse brain abnormalities. Out of 

these options, MRI is considered the most favourable due to its non-intrusive characteristics, lack of 

radiation from ions, and capacity to offer extensive details about the brain's state, whether  healthy or 

impacted by disease [4]. However, segmenting MRI brain abnormalities remains challenging due to 

variations in intensity across images, low contrast, and other imaging inconsistencies [5]. 

Brain abnormalities segmentation involves distinguishing abnormal areas within the brain from the 

normal background. Segmentation algorithms for brain abnormalities are rapidly advancing in accuracy 

and speed through the integrationof new theories and technologies [6]. However, there is still significant 

room for improvement and many challenges that require further investigation and research related to this 

area. These segmentation models are classified into two categories: variational segmentation (level-set) and 

non-variational segmentation (non-level set). Variational segmentation models minimise cost-energy 

functions using the theory of variational calculus, applying optimisation algorithms to attain optimality. 

Conversely, heuristic techniques develop non-variational methods [7-8]. 

A wealth of research has been conducted on non-variational segmentation models for MRI brain 

abnormalities, encompassing diverse approaches such as the Fast Fuzzy C-means algorithm [9], clustering-

based algorithms [10] and deep neural networks [11]. Additionally, learning-based approaches, notably 

deep learning techniques like the Attention U-Net model [12], have gained popularity in MRI brain 

segmentation. The focus promising outcomes drive the focus on learning-based approaches. However, 

achieving accurate generalisation to new images requires extensive and varied training datasets. Inadequate 

training data may cause these methods to falter when faced with images exhibiting significant deviations 

from the training distribution. Moreover, this approach can yield opaque decisions that pose challenges for 

interpretation [13]. 

Hence, numerous researchers aim to devise variational segmentation models that demand less data for 

image segmentation while delivering remarkable speed and accuracy in results. Global variational 

segmentation and selective variational segmentation are the two primary forms of variational segmentation 

approaches that can be distinguished in their approach to extracting information from an input image. 

Selective variational segmentation focuses on extracting regions of interest based on geometrical 

constraints, while global variational segmentation aims to determine the borders of all objects inside the 

image [14]. In 2017, [15] devised a level-set approach to segment greyscale MRI brain segmentation. They 

brain abnormalities. This study can be extended in future work to 
evaluate the segmentation accuracy and efficiency of brain 
abnormalities in 3D colour and greyscale MRI images. 
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addressed challenges such as noise and uneven intensity by integrating a local Gaussian distribution to 

handle intensity inhomogeneity and implementing a bias field correction technique to enhance accuracy. 

Subsequently, [16] proposed another method for greyscale MRI brain segmentation using Gaussian 

distributions to model image intensities, specifically aimed at segmenting brain lesions in MRI with 

intensity inhomogeneity. Indeed, both models are solely tailored for global segmentation, which can lead 

to suboptimal results when abnormal regions have intensities nearly identical to healthy tissue, are situated 

close to healthy tissue boundaries, have indistinct contours, suffer from low contrast, or are affected by 

noise [17].  

A selective variational segmentation model is preferred to segment a particular object given an input 

image. [18] introduced a selective variational segmentation model for greyscale medical images including 

brain images, that integrate saliency maps and local image fitting techniques. Saliency maps highlight the 

most visually distinct portions of an image, enhancing the model's ability to focus on important segments. 

The local image fitting component improves segmentation by adjusting the local intensity variations, 

increasing the model's precision. This model was tested on 30 medical images including brain MRI scans, 

and demonstrated significant improvements over existing models. Another related research on selective 

segmentation models for brain images was proposed by [19-21]. Nevertheless, all these models are only 

relevant to greyscale MRI brain images. 

To achieve better results by incorporating more information, the use of colour information can enhance 

feature extraction and improve boundary detection [5]. [12] introduced a new model that utilises deep neural 

networks to segment colour MRI brain abnormalities. This approach combines the Attention U-Net 

architecture with a hybrid loss function based on active contour. The Attention U-Net improves 

segmentation accuracy by directing the model's focus to relevant regions using attention mechanisms. The 

hybrid loss function, which combines binary cross-entropy with the traditional greyscale Chan-Vese global 

model, ensures that the abnormality boundaries are precisely delineated. This combination improves 

performance in accurately recognising and segmenting brain abnormalities. Despite these promising results, 

this method is needed for larger, more diversified datasets and computational capacities to segment more 

colour MRI brain abnormalities images. 

On top of that, a new selective variational for colour images, named the Selective Local Image Fitting 

(SLIF) model was proposed by [22]. This model is specifically developed to partition vector-valued 

(colour) images that exhibit variations in intensity. It incorporates local image fitting concepts from the 

Local Image Fitting (LIF) model by [23] and integrates a distance fitting term from the Distance Selective 

Segmentation 2 (DSS2) model by [24] into the colour variational energy functional framework to 

effectively and selectively segment colour images with intensity inhomogeneity. The SLIF model also 

employs a Gaussian function for curve regularisation. Numerical studies provided empirical evidence that 

the suggested SLIF model effectively segmented the region of interest in vector-valued images, yielding 

superior segmentation outcomes compared to the previous methods. This superiority was notably evident 

in synthetic, medical, and natural images. However, this model has not yet been tested on colour MRI brain 

abnormalities. It is important to note that segmenting colour MRI brain abnormalities is particularly 

challenging to the complexity of differentiating abnormal tissue from normal tissue, the presence of 

intensity inhomogeneity, low image contrast, and variability of brain structures. 

Thus, this paper aims to evaluate the effectiveness of the SLIF model in segmenting brain abnormalities 

in colour MRI images. Additionally, we are interested in comparing the segmentation performance between 

colour MRI images and their converted greyscale counterparts to explore the trade-off between accuracy 

and efficiency when using a variational active contour model. The rationale for this comparison lies in the 

prevalent practice of converting colour images to greyscale before segmentation. Such conversion may lead 

to data loss due to reduced image dimensions, potentially impacting the performance of segmentation 

algorithm. It is worth noting that, although the SLIF model is primarily intended for colour images, it may 

also be used to segment greyscale images by first converting the colour MRI images into greyscale. When 
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processing images, the SLIF model treats colour images as having three layers (one for each colour channel: 

red, green, and blue), whereas it considers greyscale images as having only one layer. The subsequent 

sections of this work are organised as follows: Section 2 reviews related works, including the foundational 

models LIF, DSS2, and SLIF. Section 3 outlines the methodology employed in this research, while Section 

4 showcases the experimental results and subsequent discussion. Section 5 concludes and offers 

recommendations. 

2. RELATED WORKS 

This section provides an overview of the Local Image Fitting (LIF) model, the Distance Selective 

Segmentation 2 (DSS2) model, and the Selective Local Image Fitting (SLIF) model.  

2.1 Local image fitting (LIF) model 

The Local Image Fitting (LIF) model, introduced by [23], has gained significant recognition in the 

field. This model effectively addresses the challenges associated with images exhibiting varying intensity 

levels and improves segmentation speed. It achieves this by evaluating the disparities between the original 

greyscale image and a locally fitted version. Assume that for an image ( , )u u x y=  in a domain  , the 

regularised local image fitting energy functional in the level set formulation is expressed in Eq. (1): 

Here, 1n  and 2n  represent the intensity averages of the interior and exterior within a local region, defined 

using a truncated Gaussian window ( , )kW x y , with a standard deviation   and a kernel window with a 

radius k . These constants are defined in Eq. (2): 

Then, applying the variational calculus and the steepest descent method on Eq. (1) leads to: 

where ( ) ( )( )( ) 0.5 1 2 / arctan /H    = +  is the regularised form of the Heaviside function and 

( )( )2 2( ) /     = +  is the Dirac delta function. Additionally, incorporating a Gaussian function for 

variational level set regularisation can eliminate the need to solve the highly non-linear curvature term 

( ). /    , which is computationally expensive. This, in turn, reduces the overall computational 

complexity. 

The widespread adoption of the LIF model and the Gaussian function among researchers is a testament 

to their effectiveness in segmenting images with varying intensity levels [25-26]. However, these models, 
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including the LIF model, are unsuitable for colour images and selective segmentation. They tend to produce 

over-segmented results when the region of interest (foreground) has intensities that are nearly identical to 

those of the background [20]. 

2.2 Distance selective segmentation 2 (DSS2) model 

The Distance Selective Segmentation 2 (DDS2), introduced by [17], is a selective segmentation model 

designed for colour images. Assume that, for an image ( , )u u x y= , there are 1m  geometrical points that 

must be close to the desired object boundary, forming a marker set  , which is provided by the user as 

follows (Eq. (4)): 

where 1 3m   will connect the markers to form an initial polygon P  that drives its evolution towards a 

curve  . Then, the function ( , )dL x y  expressed as the Euclidean distance of each point ( ),x y   from 

its closest point ( , )p px y P  is given by Eq. (5): 

By applying the level set function  , the DSS2 energy functional is then defined as in Eq. (6): 

where ( , )i iu u x y=  is the 
thi  channel of an image on   with 1,2,...,i N=  channels. Additionally, 

( )1

1 1 1,..., Nk k k=  and ( )1

2 2 2,..., Nk k k=  are intensity averages of interior and exterior in a global region. The 

non-negative parameters 0  1 0   and 2 0   are weights for the regularising and fitting terms, 

respectively. The area parameter   helps determine the weight of the distance fitting term. The regularised 

Heaviside function ( )H   and the Dirac delta function ( )   are defined as in Eq. (7) and Eq. (8): 
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and 

Let the level set function   be fixed. Then, Eq. (6) was minimised with respect to 1

ik  and 2

ik   that yielded 

the following Eq. (9): 

Fixing 1

ik  and 2

ik  as constants lead to the following Euler-Lagrange equations as follows (Eq. (10)): 

Here,   denotes the norm of the gradient operator of the level set function  , ensuring the smoothness 

of the generated contour. n  represented as the exterior normal at the boundary of   and / n  is the 

normal derivatives level set function   at the boundary. Eq. (10) was solved using a gradient descent 

approach with a finite difference scheme. The curvature term ( ). /     is highly non-linear, leading 

to high computational complexity. As a result, the segmentation process of the DSS2 model is relatively 

slow.  

Although the DSS2 model includes a constraint distance function designed to capture only the targeted 

object, it lacks local intensity information, which is crucial for segmenting images with inhomogeneous 

intensities. The intensity constants in the DSS2 formulation, which approximate the global average of the 

inner and outer intensities along the contour, may significantly differ from the original image if the 

intensities inside and outside the contour are not homogeneous. Consequently, the DSS2 model is unable 

to segment colour images with intensity inhomogeneities. 

2.3 Selective local image fitting (SLIF) model 

In this study, the segmentation of brain abnormalities in both colour and greyscale MRI images was 

performed using the Selective Local Image Fitting (SLIF) model introduced by [22]. This model was 

developed by integrating the concept of local image fitting energy from the Local Image Fitting (LIF) 

model, proposed by [23], and the distance fitting term from the Distance Selective Segmentation 2 (DSS2) 
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model, proposed by [24], into a variational energy functional within a vector-valued (colour) framework, 

which can be defined as follows (Eq. (11)): 

where the first term is the LIF energy in the colour framework and the second term is the distance fitting 

term. In the first term, the functions ( ) ( ) ( )  ( )( )( )1 , | , 0 ,i in mean u x y x y K x y


 =      and 

( ) ( ) ( )  ( )( )( )2 , | , 0 ,i in mean u x y x y K x y


 =      are the mean intensities of the interior and 

exterior within certain local areas, which are vital to segment intensity inhomogeneity images. ( , )K x y  is 

a Gaussian window that has been reduced with a specified standard deviation   and size of 

( ) ( )4 1 4 1 +  + , where   is the largest integer less than  . On the other hand, ( )H   is the regularised 

form of the Heaviside function such that ( ) ( )( )( ) 0.5 1 2 / arctan /H    = + . 

The second term,   is the area parameter used to restrict only a targeted object. If the targeted region 

of interest is close to its adjacent region, the value of   should be larger. Conversely, a smaller value of   

is needed to segment a distinct object. Additionally, the function ( , )dL x y  is defined as in Eq. (5). Here, 

the user inputs a set of geometrical initial markers   interactively using the 'roipoly' function in MATLAB 

software. The markers must be near the intended object border. To construct a valid initial polygon, the 

user must input at least three initial markers. The ‘roipoly’ function generates a binary image mask to be 

used in the initialisation process of the SLIF model, where pixels inside the region of interest (ROI) are set 

to 1 and pixels outside the ROI are set to 0. 

To solve the energy functional in Eq. (11), the Euler-Lagrange equation is derived and defined as 

follows in Eq. (12): 

The well-known gradient descent scheme is utilised to solve Eq. (12) numerically. Subsequently, the 

following gradient descent flow is obtained (Eq. (13)): 
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To guarantee the segmentation curve’s smoothness, Eq. (13) and Eq. (14) are convolved with a 

Gaussian function 
( )3 2 22x y

G e




− + 
= , with a standard deviation 0.45 = . This technique incurs less 

computational time compared to the traditional total variation term [22]. The main objective of this paper 

is to evaluate the effectiveness of the SLIF model in segmenting brain abnormalities specifically in colour 

MRI images. We focus on colour images because they provide more detailed information, which is crucial 

for accurately identifying abnormal regions that may be difficult to distinguish in greyscale images due to 

intensity inhomogeneity. Although greyscale images are included in our study, they are primarily used for 

comparison to demonstrate the advantages of incorporating colour information. The SLIF model was 

chosen over existing models like LIF and DSS2 because it is specifically designed to handle colour images 

and selectively segment regions of interest. Unlike LIF, which is limited to greyscale images, and DSS2, 

which lacks local intensity fitting, SLIF's ability to manage both colour data and intensity variations makes 

it the most suitable model for this task. 

3. METHODOLOGY 

This section describes the research framework as outlined in the flow chart in Fig. 1.  

 

Fig. 1. Research framework 

As shown in Fig. 1, the research methodology process begins with acquiring 30 colour MRI brain 

abnormality images, which are then converted into a greyscale format for comparison purposes. The 

decision to use 30 images aligns with previous related studies [18, 27]. Following this, both the original 

colour images and the converted greyscale images undergo brain abnormalities segmentation using the 

Selective Local Image Fitting (SLIF) model. After the segmentation process, the performance of the SLIF 

model on both colour and greyscale MRI brain images is evaluated and compared, specifically in terms of 

accuracy and efficiency. The subsequent subsection delves into each of these processes in detail. 
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3.1 Data acquisition 

To ensure the robustness and reliability of the segmentation results, 30 colour MRI brain abnormality 

images were obtained from two distinct datasets. This approach aimed to minimise potential bias and 

variability that may arise from relying solely on one dataset. Initially, 15 colour MRI images from patients 

with lower-grade gliomas (LGG) and their benchmarks, provided in TIFF format, were acquired from [28] 

and originally sized at 256 256  pixels. Subsequently, another 15 MRI meningioma images and their 

benchmarks were obtained from the Figshare brain MRI dataset by [29], available in PNG format with 

dimensions of 512 512  pixels. Notably, the original meningioma MRI images were in greyscale. 

However, for this study, green meningioma MRI images were employed, following the approach outlined 

by [5]. 

The rationale behind using green meningioma images lies in the fact that the green colour mapping 

reduces the visibility of the background, thereby enhancing the prominence of the meningioma tumour, 

resulting in better segmentation accuracy compared to the greyscale counterpart [5]. However, the efficacy 

of green colour mapping has only been validated by non-variational deep learning models. In this study, 

we are interested in testing its effectiveness in conjunction with the variational active contour model, 

specifically using the Selective Local Image Fitting (SLIF) model. Furthermore, the selection of both 

datasets is due to their convenient accessibility and immediate availability. All 30 images were resized to 

128 128  pixels to enhance computational efficiency. Bilinear interpolation resizes the image by averaging 

the nearest four pixels, creating smooth transitions. This preserves important features, like edges and 

textures, ensuring the resized image maintains its quality for accurate segmentation results [30]. 

3.2 Convert colour MRI brain abnormalities images into greyscale images 

By converting the colour MRI brain images to greyscale, this study aims to assess whether the removal 

of colour information impacts the segmentation accuracy and efficiency of the variational active contour 

model. The ‘rgb2gray’ function in MATLAB software has been implemented to convert colour RGB 

images to greyscale. The ‘rgb2gray’ function transforms RGB (colour) images into greyscale by discarding 

saturation and hue details while preserving luminance [31]. This can be expressed by the following Eq. 

(15): 

Here, ( ),i iu u x y=  is the 
thi  colour image channel on the domain   with 1,2,...,i N=  channels. For 

colour images, the value of N  is three (
1u = red channel, 

2u =green channel and 
3u = blue channel), 

whereas for greyscale images, the value of N  is one. Thus, ( ),u u x y=  is the converted greyscale image. 

  is a vector of weights that represents the relative sensitivity of the human eye to the red, green, and blue 

colour channels. For the greyscale conversion formula, ( )0.2989,0.5870,0.1140 = , where each value 

corresponds to the weight for the red, green, and blue channels respectively [32].  

3.3 Brain abnormalities segmentation using SLIF model 

In this study, the segmentation of brain abnormalities in both colour and greyscale MRI images was 

performed using the Selective Local Image Fitting (SLIF) model introduced by [22]. To implement the 

SLIF model, the MATLAB R2021a software was utilised. The central processing unit (CPU) processor 

used was an AMD Ryzen 7 7735HS with Radeon Graphics, operating at a frequency of 3.20 GHz and 

accompanied by 16 GB of installed memory (RAM). The program is automatically halted using two 

 

( )
1

N i

i
u i u

=
=  . (15) 



126 A.S.B. Azam et al. / ESTEEM Academic Journal, Vol. 20, September 2024, 117-134 

https://doi.org/10.24191/esteem.v20iSeptember.1854.g1820

 

 ©Authors, 2024 

stopping criteria: a value of tolerance 0.005tol =  and the maximum number of iterations 3000maxiter = . 

The values for tolerance and maximum number of iterations were selected based on the recommendations 

outlined by [22] in their original paper. The algorithm provided below outlines the implementation process 

for the SLIF model: 

Step 1: Set the value of parameters and define a set of initial markers  . 

Step 2: Determine ( , )dL x y  using Eq. (5). 

Step 3: Initialise the level set function   such that   is the boundary of P . 

Step 4: For iteration 1iter =  to maxiter  or 
1m m m tol  + −    do 

        Compute ( )1

i mn   and ( )2

i mn  . 

            Evolve   based on Eq. (13) for colour and Eq. (14) for the converted greyscale image to get 

1m + . 

            Regularise   by convolving 1m +  with a Gaussian function 
( )3 2 22x y

G e




− + 
= . 

            end for 

Step 5: The output   is the ultimate resolution. 

3.4 Performance evaluation 

To assess and compare the segmentation accuracy, three distinct evaluation metrics were utilised. The 

first of these is the Dice Similarity Coefficient (DSC), which is mathematically represented as follows (Eq. 

(16)): 

where TP  represents True Positive (correctly predicted as an abnormality), FP  stands for False Positive 

(incorrectly predicted as an abnormality) and FN  corresponds to False Negative (incorrectly predicted as 

normal) [33]. Subsequently, the Inter-section-over-Union (IoU) metric was employed, which can be defined 

as follows (Eq. (17)): 

The difference between the DSC and the IoU lies in how they penalise over-segmentation and under-

segmentation, with the IoU applying greater penalties than the DSC. Both metrics are scored on a scale 

from 0 to 1. A score of 0 indicates no overlap between the actual and predicted segments, while a score of 

1 signifies complete congruence. Therefore, higher DSC and IoU scores reflect superior segmentation 

accuracy [5]. 

Furthermore, this study also employed the Matthews correlation coefficient (MCC). The MCC serves 

as a correlation coefficient between the actual and predicted binary values, providing a result that ranges 

 

2

2

TP
DSC

TP FP FN
=

+ +
, (16) 

 

TP
IoU

TP FP FN
=

+ +
. (17) 
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from -1 to +1. A score of +1 indicates a perfect prediction, 0 signifies performance equivalent to random 

guessing, and -1 implies complete discordance between the actual and predicted values. The MCC is 

calculated using the following formula in Eq. (18): 

Moreover, this research also evaluated and compared the efficiency of segmenting brain abnormalities 

in colour and greyscale MRI images by analysing the elapsed processing time. Accurate measurement of 

elapsed processing time was achieved using the 'tic' and 'toc' MATLAB built-in functions. To ensure the 

robustness of the results, the experiment was replicated thrice, and the average elapsed processing time   

was calculated. 

4. RESULTS AND DISCUSSION 

This section discusses the overall segmentation outcomes for both colour and its converted greyscale MRI 

brain abnormalities utilising the Selective Local Image Fitting (SLIF) model. Regarding parameter 

configuration, we maintained a fixed value of epsilon 1 = , standard deviation 0.45 = , maximum 

iteration 3000maxiter =  and tolerance 0.005tol = . However, the values of the parameter area   and 

standard deviation   varied depending on the individual MRI brain images to achieve optimal segmentation 

results:  20,500 =  and  2,15 = . Table 1 presents all 30 colour brain abnormalities MRI images used 

in this study. 

As illustrated in Table 1, images 1 to 15 are colour MRI images from patients with lower-grade gliomas 

(LGG), while images 16 to 30 are green meningioma MRI images. Each image is annotated with a set of 

initial markers indicating the targeted brain abnormalities to be segmented. For a fair comparison, the 

coordinates of the initial markers were kept consistent for both the colour images and their converted 

greyscale counterparts. Table 2 illustrates the visual comparison of segmentation results for four colour 

brain MRI images from Table 1 using the SLIF model. 

Based on Table 2, the images in the first column are colour MRI brain images with initial markers. As 

shown in the second column, the initial markers are connected to construct an initial contour for the 

initialization process. The third column displays benchmark images validated by experts. The binary 

segmentation results for the colour MRI brain images, generated using the SLIF model, are shown in the 

fourth column. Meanwhile, the binary segmentation results for the converted greyscale counterparts are 

presented in the fifth column. By visual inspection, the SLIF model appears to segment brain abnormalities 

comparably well in both the colour images and their converted greyscale versions. To quantitatively assess 

performance, Table 3 presents a comparison of the numerical segmentation results obtained from the 30 

brain MRI images using the SLIF model. The comparison includes four key evaluation metrics: Dice 

Similarity Coefficient (DSC), Intersection-over-Union (IoU), Matthews Correlation Coefficient (MCC), 

and average elapsed processing time  .  

In Table 3, it's evident that across all 30 brain MRI images, the DSC, IoU, and MCC values are 

consistently higher for colour images compared to their converted greyscale counterparts when using the 

SLIF model. On average, the colour images achieved a DSC of 0.9282, an IoU of 0.8669, and an MCC of 

0.9281, whereas the greyscale images achieved a DSC of 0.9171, an IoU of 0.8481 and an MCC of 0.9178. 

Consequently, the percentage differences for DSC, IoU, and MCC are approximately 1.21%, 2.22%, and 

1.12%, respectively. This disparity suggests that colour images provide supplementary information, thereby  

 

( ) ( )

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

 − 
=

+ + + +
. (18) 
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1 2 3 4 5 

     
6 7 8 9 10 

     
11 12 13 14 15 

     
16 17 18 19 20 

     
21 22 23 24 25 

     
26 27 28 29 30 

Table 1. Colour brain abnormalities MRI images with initial markers 
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enhancing the model's capacity to distinguish between targeted brain abnormalities and surrounding tissue. 

Therefore, the utilization of colour MRI leads to a more precise delineation of abnormalities, underscoring 

the advantages of employing colour imaging in segmentation tasks. 

Table 2. Comparison of the segmentation results using the SLIF model 

Brain MRI Image with 
Initial Markers 

Brain MRI Image with 
Initial Contour 

Benchmark 
Segmentation Result 
(Colour) 

Segmentation Result 
(Converted Greyscale) 

     
3 3a 3b 3c 3d 

     
11 11a 11b 11c 11d 

     
20 20a 20b 20c 20d 

     
29 29a 29b 29c 29d 

 

When processing colour images, the SLIF model treats the image as a vector-valued function, where 

each pixel contains three values corresponding to the RGB channels. The model processes each channel 

independently by applying the same variational segmentation framework to all three channels. This 

approach allows the segmentation to account for colour information during the curve evolution process. 

The final segmentation result is obtained by combining the information from all three channels. This results 

in a more accurate delineation of the abnormal regions compared to grayscale images, which lack this 

additional colour information. 

In addition to the observed improvements in segmentation accuracy, it is noteworthy to consider the 

computational aspect. On average, processing a single-colour image took 3.1431 seconds, while a greyscale 
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image required 2.2561 seconds when using the SLIF model. Despite the slight increase in processing time 

for colour images, the corresponding enhancement in segmentation accuracy justifies this trade-off. 

Overall, these findings highlight the promising role of colour MRI in enhancing diagnostic accuracy and 

improving clinical decision-making, particularly in the realm of brain cancer detection applications. 

Table 3. Comparison of the segmentation results using the SLIF model 

Brain MRI 
Image 

SLIF Model (Colour Image) SLIF Model (Converted Greyscale Image) 

DSC IoU MCC   DSC IoU MCC   

1 0.9258 0.8619 0.9268 3.0555 0.9139 0.8414 0.9155 2.2571 

2 0.9106 0.8359 0.9121 3.0732 0.9015 0.8207 0.9036 2.2422 

3 0.8800 0.7857 0.8830 3.5065 0.8778 0.7822 0.8810 1.7311 

4 0.8793 0.7846 0.8835 3.4337 0.8759 0.7793 0.8805 1.6781 

5 0.8879 0.7985 0.8891 2.0629 0.8528 0.7434 0.8555 1.8735 

6 0.9351 0.8781 0.9330 3.4984 0.9280 0.8658 0.9257 2.3184 

7 0.9292 0.8678 0.9264 5.7623 0.9309 0.8707 0.9282 3.2151 

8 0.9460 0.8975 0.9430 2.3553 0.9434 0.8929 0.9402 2.1408 

9 0.9227 0.8564 0.9216 2.1668 0.9139 0.8414 0.9137 1.9994 

10 0.9571 0.9177 0.9557 2.3673 0.9405 0.8877 0.9388 2.1050 

11 0.9318 0.8724 0.9306 2.1710 0.9293 0.8679 0.9280 1.9907 

12 0.9365 0.8806 0.9359 2.2268 0.9373 0.8820 0.9363 2.0181 

13 0.9189 0.8500 0.9200 2.9236 0.9008 0.8195 0.9033 2.1567 

14 0.8837 0.7916 0.8856 2.8946 0.8941 0.8084 0.8953 2.1910 

15 0.8845 0.7930 0.8870 3.3643 0.8937 0.8079 0.8953 2.3542 

16 0.9489 0.9027 0.9475 2.5381 0.9204 0.8525 0.9201 2.0705 

17 0.9352 0.8784 0.9335 2.1908 0.9288 0.8670 0.9279 2.0465 

18 0.9051 0.8267 0.9077 2.9248 0.8828 0.7902 0.8876 2.3409 

19 0.9701 0.9420 0.9695 2.2512 0.9599 0.9229 0.9594 2.1519 

20 0.9714 0.9443 0.9706 2.2728 0.9680 0.9380 0.9671 2.1646 

21 0.9701 0.9420 0.9692 2.2582 0.9720 0.9456 0.9712 2.1001 

22 0.9451 0.8960 0.9444 2.2199 0.9083 0.8320 0.9096 2.1082 

23 0.8919 0.8049 0.8911 8.6921 0.8897 0.8012 0.8894 3.4989 

24 0.9434 0.8929 0.9432 2.1303 0.9421 0.8906 0.9428 2.0242 

25 0.9462 0.8978 0.9445 2.9016 0.9350 0.8779 0.9339 2.0865 

26 0.9505 0.9057 0.9491 2.2996 0.8876 0.7980 0.8905 2.0414 

27 0.9131 0.8333 0.9134 3.3514 0.9091 0.8333 0.9109 2.5362 

28 0.9369 0.8813 0.9374 8.9381 0.9219 0.8551 0.9236 3.9755 

29 0.9476 0.9005 0.9483 2.2887 0.9349 0.8778 0.9361 2.2550 

30 0.9403 0.8873 0.9406 2.1720 0.9195 0.8511 0.9213 2.0118 

Average 0.9282 0.8669 0.9281 3.1431 0.9171 0.8481 0.9178 2.2561 

5. CONCLUSION  

In conclusion, this study investigated the effectiveness of the SLIF model in segmenting brain abnormalities 

in colour MRI images compared to converted greyscale counterparts. To ensure the strength and 

dependability of the segmentation outcomes, 30 images of colour MRI brain abnormalities were sourced 

from two separate datasets: 15 colour MRI images with lower-grade gliomas (LGG) and 15 colour MRI 

meningioma images. This method was employed to mitigate potential biases and variances that could occur 

solely depending on one dataset. Experimental results demonstrated that while both colour and converted 

greyscale images achieved high segmentation accuracy when using the SLIF model, colour MRI images 
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exhibited slightly better performance across key evaluation metrics, including Dice Similarity Coefficient 

(DSC), Intersection-over-Union (IoU) and Matthews Correlation Coefficient (MCC). Additionally, colour 

imaging provided supplementary information, enhancing the model's capacity to delineate abnormalities 

precisely. However, it is essential to note the slight increase in processing time for colour images, 

suggesting a trade-off between accuracy and efficiency. 

Further research is needed to validate these findings on larger and more diverse datasets, covering 

various types of brain abnormalities and clinical scenarios. To enhance the segmentation accuracy of the 

SLIF model in colour MRI brain abnormality images, it can be refined by incorporating image enhancement 

techniques in colour space as a new fitting term, following the research by [27]. Additionally, since the 

SLIF model has not been applied to segment text in document-like images, such as old Jawi manuscripts 

(OJM), future studies could integrate image inpainting techniques from work by [34] into the SLIF 

formulation to segment Jawi text  OJM. Moreover, future work could also extend this study to evaluate the 

brain abnormalities segmentation accuracy and efficiency of the SLIF model on 3D colour and greyscale 

MRI images, providing a more comprehensive understanding of the model's performance in three 

dimensions and potentially leading to further advancements in segmentation techniques and clinical 

applications. 
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