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 The effective management of solar photovoltaic (PV) arrays is vital to 
maximising energy generation and ensuring long-term performance 
reliability. The presence of faults, or partial shading, can give rise to 
hotspots in PV arrays, making their detection critical for timely 
maintenance and avoiding further impacts on their performance. This 
paper describes a new approach to the hotspot detection issue in thermal 
images of solar PV arrays by leveraging deep learning. This study 
employs the YOLOv10 (You Only Look Once, version 10) model to 
deliver very high accuracy and speed in identifying and localising 
hotspots under defined regions of interest (ROIs). The proposed method 
begins with taking thermal images from multiple solar PV installations 
while capturing a range of operational conditions and fault types. These 
images are annotated with hotspot regions to create a robust training 
dataset. Given YOLO's capability for real-time object detection with 
high precision and mean average precision (mAP), the YOLOv10 model 
is then implemented to train on this dataset. Multiple changes were made 
to the YOLOv10 hyperparameters to optimise them for detecting 
hotspots in thermal images. The experimental scenario of this paper 
demonstrates that this approach indeed performs significantly better than 
standard image processing methods as well as prior deep learning 
models for detecting both hotspot accuracy as well as speed of 
processing the images. The YOLOv10 method demonstrated the highest 
available classification performance with a mAP at intersection over 
union (IoU) of 0.5 accuracy of 0.91 with inference time suitable for real-
time applications. The sample results demonstrated the model's 
continuous ability to detect hotspots and provide location data under 
various conditions, such as crossing through different times of day and 
weather. The results of this study demonstrate that YOLOv10 can be 
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used for improved detection of hotspots in the explicably thermal 
imagery of solar PV arrays. 
 

1. INTRODUCTION 

The current human society embraces the use of solar PV arrays as a renewable energy system, which means 

that proper maintenance techniques are required to enhance the durability of the system. Solar PV arrays 

are susceptible to diverse problems, including partial shading, cell degradation, and debris buildup, which 

results in hotspot formation [1]. Moreover, these hotspots not only reduce the efficiency and maximum 

power of the affected panels but can also progress to the formation of extensive damages, which would 

have negative impacts on both the efficiency and longevity of the general PV system [2]. Therefore, it is 

important to identify the hotspots as soon as possible and determine their exact location to be able to decide 

on performing maintenance and preventing possible risks on time. 

Previous approaches to detecting hotspots often require manual visualisation in conjunction with only 

a basic thermal imager, which may be laborious and error-prone work [3]. Recent deep learning 

advancements, especially object detection-related research, have provided a possible solution for this 

problem. Of all the currently available models, the series of YOLO has obtained quite compelling attention 

since it is able to perform real-time object detection with high accuracy. A later version is YOLOv10 [4], 

which has been enhanced with a number of features that have made it especially suitable for challenging 

tasks, especially in diverse and dynamic backgrounds like thermal images of solar photovoltaic arrays. 

This research aims to investigate the benefits of using YOLOv10 for detecting hotspot regions of 

interest in thermal images of solar power plants. So, using an improved version of YOLOv10 at the same 

time would be efficient and effective for following schemes of hotspot detection to help maintain solar PV 

systems and improve their efficiency. The scope of this paper is thus to fine-tune a pre-trained YOLOv10 

model for thermal hotspot detection, with an eventual view of real-time monitoring and control of solar 

photovoltaic arrays. This work tries to confirm the efficacy of this approach and show its importance and 

relevance to renewable energy. 

2. LITERATURE REVIEW 

The detection of hotspots in solar PV arrays has attracted a lot of research interest because of the importance 

of minimising hotspot-related degradation of solar system performance and its potential damaging effects. 

Conventional approaches to identifying hotspots are simplistic, such as through visual surveys or 

rudimentary infrared scans [3]. Conventional inspection techniques, despite their effectiveness, are escorted 

by high costs in terms of time, produce, and, most importantly, can be compared with human errors in some 

cases [5]. While basic thermal imaging methods are able to detect temperature variations, which in turn is 

indicative of an object’s temperature, their resolution may not be sufficient to pinpoint areas of the object 

that are emitting high levels of temperatures and segregate between different types of hotspots [6]. Several 

studies that use image processing techniques for thermal images using thresholding and edge detection 

techniques have been reported in the literature, and these approaches have been noted to suffer from 

fluctuations in environmental conditions and the non-uniformity of PV array surfaces. 

The combination of concepts of machine learning and deep learning in the last few years has given new 

dimensions to the hotspot detecting field. Typically, various features were used in the early adoption of 

machine learning techniques combined with the classification algorithms such as support vector machines 

(SVMs), decision trees, and so on [7-8]. Though these methods increased the chances of detecting 

abnormalities, these techniques were hard-coded and demanded feature engineering and have shown poor 
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results when generalised to different types of PV arrays and environments. The use of the convolutional 

neural network (CNN) introduced a significant improvement in end-to-end learning and higher accuracy 

for image-based tasks [9]. Different architectures of CNNs have been used for hotspot detection, with 

significant enhancements in comparison with the conventional techniques [10]. 

In a 2022 study conducted by F. Fan et al. [11], the dataset was split into two distinct parts: an 

unenhanced set containing 39 images with hotspots and 39 images without, and an enhanced set comprising 

292 hotspot images and 192 non-hotspot images. The researchers employed a five-layer CNN architecture 

to detect and classify infrared near-field images of photovoltaic (PV) modules. The accuracy results showed 

that the CNN model outperformed the Naïve Bayes classifier in both datasets, achieving 89.47% accuracy 

on the unenhanced dataset (compared to Naïve Bayes' 79.49%) and an impressive 96.58% accuracy on the 

enhanced dataset (compared to Naïve Bayes' 91.78%). The performance improvement in the enhanced 

dataset was particularly significant.  

In a 2023 study by H. Bakir [12], a convolutional neural network (CNN) was employed to extract 

features from thermal images of both operational and faulty photovoltaic (PV) modules. The extracted 

features were then validated using a Long Short-Term Memory (LSTM) model, with training and validation 

conducted across varying image quantities. The dataset was divided into three scenarios: Case 1 with 300 

images, Case 2 with 500 images, and Case 3 with 1,000 images. When using raw data, the LSTM model 

achieved an accuracy of 80.99%, outperforming the CNN's accuracy of 73.55%. However, when data 

augmentation was applied, the CNN demonstrated significant improvements, achieving accuracies of 

87.84%, 86.42%, and 95.05% across the three cases, respectively, while the LSTM model's accuracies were 

70.16%, 77.82%, and 78.39%. The results indicate that while LSTM excelled with raw data, CNN's 

performance was markedly enhanced with data augmentation. 

The family of models YOLO was developed as an answer to the real-time object recognition tasks with 

a high degree of accuracy. Proposed by [4], the YOLO model re-imagined object detection as a single 

regression task, wherein bounding boxes together with class probabilities were directly predicted from the 

full image in a single pass. This approach significantly cut the computation time as opposed to those 

methods that call for sequential passes over the image. In YOLOv3, there were enhancements made in 

accuracy and detection of multiple scales, making it more versatile [13]. With regard to the developments 

in network architecture, training methods, and post-processing steps, YOLOv5 improved performance once 

again [14-15]. The latest of them is YOLOv10, which has been developed based on the state of the art in 

deep learning and computer vision [4]. It has a more complex framework for feature extraction, including 

the backbone network, improved anchor box mechanisms for better localisation, and improved loss 

functions for training purposes. We also observed that the real-time processing nature of YOLOv10 in 

combination with a relatively high detection accuracy makes it ideally suited for tasks where fast detection 

and proper identification of small or tightly situated objects is necessary, such as detection of hotspots in 

thermal images of solar PV arrays. 

These advancements of YOLO models, including YOLOv10, are applied in the present hotspot 

detection while eliminating the drawbacks of previous methods. Through the same approach that the current 

YOLOv10 offers a model that can learn from thermal images with annotations, YOLOv10 offers a reliable 

and efficient means of hotspot identification [16-17]. This not only increases the dependability of PV array 

maintenance but also increases renewable energy use by boosting output and minimising interruptions. 

3. METHODOLOGY 

To implement an efficient and accurate detection algorithm for hotspot ROIs in thermal images of solar PV 

arrays, this study proposed a deep learning-based approach that used the YOLOv10 model. The 

methodology, as illustrated in Fig. 1, encompasses the following: Collection and annotation of thermal 
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image datasets. The data are so imperative that they are meant for both training and testing the YOLOv10 

model. Images are captured in such a way that PV systems can cover large areas that fix working conditions 

and fault types, which boosts the reliability of the model. After the dataset was acquired, in the annotation 

phase, the specific hotspot areas are labelled systematically towards the development of a ground truth. 

Thus, this stage becomes so important for enabling the development of a hot spot feature learning in 

YOLOv10. This is followed by tuning the configurations towards further refinement of the YOLOv10 

model for thermal hotspot detection. Possibly, things to be changed are all the following: dimension of the 

input of the network, learning rate, and other hyperparameters that may give better output in the context of 

this application. 

 

Fig. 1. Methodology flowchart of study implementation 

The training phase consists of passing the annotated dataset into the YOLOv10 model. In this process, 

preprocessing techniques are used to improve the comprehensiveness of the proposed model. These 

techniques aid the model to handle variations in thermal images, such as in terms of lighting, angle, and 

environmental impacts. The training is done by using cross entropy for classification and mean squared 

error for localisation so as to accurately detect and localise the hotspots. After the training of the model is 

complete, the model is then tested by a validation and test set. Evaluation is done using performance 

indicators like precision, recall, and mean average precision (mAP). Furthermore, the time taken for 

inference is evaluated to identify if the model can support real-time use. We demonstrate that by using the 
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YOLOv10-based approach, it is possible to achieve significant improvements after results analysis with 

baseline methods. The last one is the necessary utilisation of the trained model in practical activities and 

materials. This is in addition to incorporating thermal imaging in the model to facilitate monitoring of the 

PV arrays on a continuous basis. As a result of the methodology, the developed system can accurately 

identify potential hotspots instantaneously and therefore enable timely resolution of the issue, with a 

beneficial impact on the general power output of solar PV systems. 

3.1 Dataset Collection 

In obtaining the thermal images for this research, a systematic method was followed in order to obtain 

a large dataset with sampling characteristics that encompass a wide range of various conditions of operation 

in solar PV arrays. Photographs were taken by high-performance thermal cameras on drones and mobile 

platforms that allowed to image large-scale PV plants from above 30 meters in height. The data was 

collected within different times in a day, different weather conditions, and different seasons so as to 

encompass a broad thermal signature of normal and abnormal performance. To further strengthen this study, 

images were captured from the solar PV farms in Kelantan, Malaysia with different types of panels and 

settings. This led to data collection that entailed over 888 images with 390 raw thermal images labelled 

with hotspots, where each image has been annotated to point to the areas with hotspots. This rich and diverse 

dataset excellently complements this work since it offers the model a broad range of data variations on 

which it will be trained, thus helping the YOLOv10 model generalise well in different PV array settings 

and conditions. 

3.2 Data Annotation 

The data annotation for this study entailed a careful and detailed labelling of hotspot areas in thermal 

images obtained for the formation of a high-quality training dataset for the YOLOv10 model. First, thermal 

images were used in a specialised annotation tool, namely LabelImg, that is intended for accurate labelling 

[18]. Expert annotators involved in bracketing a high number of images in detecting hotspots in solar PV 

arrays usually analyse every image in order to look for hotspots that are defined by highly contrasting 

temperatures, which could mean faults or inefficiency. The definition of each hotspot area was done with 

much precision by the use of bounding boxes, which helped to minimise the chances of mislocalisation. In 

addition, the annotations provided include classification labels to categorise all different regions of 

hotspots, likely caused by partial shading, cell damage, or even debris buildup [1]. This enormous 

annotation was really necessary to effectively train the YOLOv10 model for identifying hotspot regions, 

differentiating those across a variety of thermal imaging conditions. The annotated dataset described above 

was comparatively analysed with the database to ensure the correct organisation of all entries. Any missing 

information or discrepancies found were corrected by thorough validation to ensure the training data 

compiled was complete and accurate. 

Bounding Box Equation for YOLO Annotation 

In YOLO annotation, each bounding box is defined by five key parameters: class id, (x), (y), (w), and 

(h). These parameters are normalised to the image dimensions and represent the center coordinates, width, 

and height of the bounding box. Here’s how they are calculated: 

(i) Class ID represents the number of class names annotated for the bounding box region of 

interest of the images. 

(ii) (x), Eq. (1) and (y), Eq.(2) represent the coordinates of the center of the bounding box, 

normalised by the width and height of the image respectively [4], [19]. 

(iii) (w), Eq (3) and (h), Eq.(4) denote the width and height of the bounding box, also normalised 

by the width and height of the image [4], [19]. 
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The equations for these parameters are as follows: 

 

x= 
xmin + xmax  

(1) 
2W  

 

y= 
ymin + ymax  

(2) 
2H  

Here, xmin and xmax are the minimum and maximum x-coordinates of the bounding box, ymin and ymax 

are the minimum and maximum y-coordinates, and W and H are the width and height of the image [4], [19]. 

w= 
xmax + xmin  

(3) 
W  

 

h= 
ymax + ymin  

(4) 
H  

 

Where; w calculates the width of the bounding box as a fraction of the image width and h calculates 

the height of the bounding box as a fraction of the image height. 

Thus, the YOLO annotation for the bounding box would be represented as Fig. 2 below in .txt file 

format. These normalised values enable the model to accurately detect and localise objects in different 

images, regardless of their original dimensions. 

 

Fig. 2. Bounding box labels for YOLO in .txt, [class id, x_center, y_center, width, height] 

3.3 Training Process 

In order to achieve high accuracy and efficiency, the YOLOv10 model training process for detecting 

hotspots in thermal images of solar PV arrays involved several key steps. First, this study implemented data 

preprocessing so that the input quality would be constant while working with thermal images. This involved 

scaling images to fit the input dimensions required by the model and standardising pixel values, which 

improved upon the feature extraction methods used. As shown in Table 1, hyperparameter tuning was done 

using the grid search method that identifies the best learning rate, batch size, and momentum, therefore 

facilitating stable and effective training. During the grid search method used in this study, different 

combinations of hyperparameters were tested, including learning rates such as 0.001, 0.005, and 0.01, batch 

sizes (1, 2, 4, 8) as well as momentum values like 0.8, 0.9, and 0.95. 

For each hyperparameter, this study selected a predefined range of possible values and tested them all 

together. With each combination, the model underwent a full training cycle. The final model configuration 

was selected based on the set of hyperparameters that gave the best performance, as measured by stability 

during training and high accuracy in hotspot detection. Training was done in a high-performance computing 
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environment using an NVIDIA GeForce RTX 3050 Laptop GPU with 4096MiB and was done using 

PyTorch for the development of the model. The model was iteratively trained, validated, and tested against 

continuous monitoring over multiple epochs to avoid overfitting and ensure that the model has converged. 

The consequence is that heavy training of YOLOv10 allowed it to learn intensive features of complex 

patterns of thermal hotspots, thus providing a real-life reliable detection system in PV array applications. 

3.4 Performance Evaluation Metrics 

Mean Average Precision (mAP) 

The mean Average Precision (mAP) as depicted in Eq. (5), is a vital metric for assessing the model's 

proficiency in accurately detecting hotspots in solar photovoltaic (PV) panels [20]. This metric evaluates 

the precision and recall of the predicted hotspots against actual hotspots over various confidence thresholds. 

By determining precision and recall at different confidence levels, mAP offers a comprehensive measure 

of the model's overall performance. A higher mAP signifies better hotspot identification across all 

categories, indicating the model's effectiveness in differentiating between true hotspots and false positives. 

 

mAP = 
1 

∑ 
N 

Precision(i) x Recall(i) 
 

(5) 
|TP|+|FP| i=1  

Precision and Recall 

Precision and recall are critical metrics for evaluating the model’s performance in hotspot detection 

[20]. Precision, as shown in Eq. (6), assesses the proportion of accurately identified hotspots out of all 

predicted hotspots, thereby providing insight into the reduction of false positives. Conversely, recall, 

illustrated in Eq. (7), evaluates the proportion of actual hotspots that the model successfully detects, 

highlighting the reduction of false negatives. Combined, these metrics offer a thorough assessment of the 

model's accuracy and dependability in identifying hotspots within solar PV panels. 

Precision = 
     TP  

(6) 
TP + FP  

 

Recall = 
     TP  

(7) 
TP + FN  

 

Table 1. Hyperparameter tuning for training process 

Hyperparameter/Configuration Description 

Input image [640, 512] 

No. of class 1 (hotspot) 

Optimizer SGD 

Learning rate 0.01 

Batch size 8 

Total of epoch 200 

Dataset split 80% (training) : 10% (validation) : 10% (test) 
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Where; TP is the total number of true positive instances, FP is the total number of false positive 

instances, TN is the total number of true negative instances, FN is the total number of false negative 

instances, N is the total number of hotspot predictions, Precision(i) is the ith prediction, and Recall(i) is the 

ith prediction. 

4. RESULTS AND DISCUSSION 

The learning effectiveness and detection precision clarity that both training and performance metrics, as 

proposed and reported by the YOLOv10 model, respectively, put into use in the development process of 

detecting thermal image hotspots of solar photovoltaic arrays are revealing. Time series plots reflected in 

Fig. 3 disclose persistent improvement regarding several important metrics, which gives an indicator of a 

model that is so learnt in the easy task of learning and generalising hotspot detection. The train/box_om 

graph is plotted, and from the graph, the bounding box regression loss gradually falls during the complete 

training period from high values to convergence in time. In some sense, this might be interpreted to mean 

that model predictions on the location and size of bounding boxes around detected objects have graduated 

towards true values with time. In the cls_om, it has a very strong decrease in the graph of general 

classification loss and indicates an enhancement in the model's skill about the proper identification of 

hotspots derived from the thermal images. Again, the distribution of the focal loss within the trains/dfl_om 

graph also performs this type of process, showing downward trends and indicating that focus is moving 

onto harder examples with raised overall detection skill. 

 

(a) (b) (c) (d) (e) 

 

(f) (g) (h) (i) (j) 

Fig. 3. Graphical view of training and validation process and evaluation performance metric over 200 epochs; (a) 
bounding box regression loss; (b) classification loss; (c) distribution focal loss; (d) validation of bounding box 
regression loss; (e) validation of classification loss; (f) Recall; (g) mean Average Precision at a 50% Intersection over 
Union (IoU) threshold; (h) mean Average Precision across multiple IoU thresholds (from 50% to 95%); (i) validation 
of distribution focal loss; and (j) Precision 
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Other graphs, such as train/box_oo, train/cls_oo, and train/dfl_oo, add further evidence supporting the 

learning pattern of this model in different dimensions or stages of training, where one can continuously 

notice the decreases of the values of losses. All these put together give evidence that this model is working 

fine in fine-tuning its parameters towards optimisation in detection precision and robustness. The evaluation 

metrics give a more global view of the model's performance. There is a very high recall, peaking at around 

0.9 on the metrics/recall (B) graph, implying the model has very high sensitivity and can capture almost all 

true hotspots from thermal images. In this regard, the graph metric/mAP50(B) shows the mean Average 

Precision at 50% intersection-over-union. There is an increasing curve that becomes stable to a point of 

about 0.8. This indicates both the precision and recall of the model and hence confirms that it correctly 

detects the hotspots and places them, baring extensive overlap with the ground truth. 

This would be further asserted by the metrics/mAP50-95(B) plot, taking into account mean Average 

Precision across several IoU thresholds, from 50% to 95%, and maintaining performance at a good level 

for different detection criteria, with a final value around 0.6. This full metric will have the model not only 

be very precise under normal conditions but also resistant in cases of strict localisation requirements. To be 

precise, the graph of metrics/B shows an augmentation and then a slight stability around 0.8, indicating that 

at this value, the model performs optimal minimisation of false positives while maintaining a high level of 

correct detections. 

After 200 epochs in around 0.359 h, the optimizer was stripped from keyed-up weights of the 

YOLOv10 model to reduce file size to 5.7 MB. For final validation, best model weights were done on setup 

running Ultralytics with Python 3.9.19 and PyTorch 2.3.1 compiled on NVIDIA GeForce RTX 3050 Laptop 

GPU system. The fused YOLOv10n model comes with 285 layers with 2,695,196 parameters that achieve 

8.2 GFLOPs. The model was trained over 710 images and validated on 89 images containing hotspot 

instances, achieving a precision (P) of 0.92, recall (R) of 0.95, mean average precision at IoU 0.5 (mAP50) 

of 0.91, and mean average precision at IoU 0.5 to 0.95 (mAP50-95) of 0.592. 0.3 ms in preprocessing, 5.6 

ms in inference, and 0.3 ms in post-processing per image—underscoring the need to have both efficient and 

correct detection of hotspots in thermal images of photovoltaic solar arrays. The performance results 

obtained are tabulated in Table 2 below. 

The curve represents how the YOLOv10 model performs in the hotspot detection within thermal 

images by relating its precision-recall. Fig. 4 explains the curve in which the model possesses a precision 

value of 0.91 under different recall requirements. Thus, the model can predict hotspots precisely to a high 

degree of truth and maintain low false positives. The sharp rise into a peak value on the right-hand side of 

the curve indicates that the model correctly identified most of the positives. After this point, the precision 

starts falling. That means the model is working; it can pick most of the possible hot spots with high 

confidence. As a result, the calculated mAP at the threshold value of IoU equal to 0.5 is equal to 0.91 for 

all entries and creates the sound base of lidar rigour and reliability in models identifying hotspots. Overall 

complete findings, with the right calibration, suggest that this model can make assignments with a fairly 

balanced trade-off between precision and recall. 

Table 2. Performance evaluation for training and validation over 200 epochs 

Evaluation Metrics Reading Results (%) 

precision (P) 92.00% 

recall (R) 95.00% 

mAP50 91.00% 

mAP50-95t 59.20% 
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Fig. 4. Plotting graph of Precision-Recall Curve 

In other words, the integration of the decreasing loss metric and high stable evaluation metric, such as 

recall, precision, and mAP values, at the end of a training epoch indicated the possibility to train and 

optimise the YOLOv10 model properly for hotspot detection in thermal images. The high recall and high 

precision of the model validator ensure that the identification and localisation of hotspots are valid. 

Therefore, this tool is important in the maintenance and re-establishment of the solar photovoltaic facilities' 

effective operation. With that, the capability of the fault detected is extremely needed in order to detect and 

mitigate faults, hence boosting operational performance of solar energy systems in time [21]. 

Qualitative results, as shown in Fig. 5, through the validation and testing depicted from the provided 

thermal images, show the extensive performance of the YOLOv10 model in both identification and 

localising hotspots in solar PV arrays or modules. The raw thermal fusion image created from the thermal 

camera with temperature readings better locates hotspots compared to the total dependency of the hot colour 

mapping. This change helps to maintain accurate colour representation and evade the deceitful yellowish 

tint while providing a better means of visually distinguishing hotspots. 

With each hotspot, the image is annotated wherever there is identification, along with a confidence 

score, indicating that the model finds the regions of interest correctly. The fact that hotspots tend to be 

consistently identified under different imaging conditions clearly points to a high generalisation capability 

of the model. Such confidence scores, mainly from 0.6 to 0.9, signify the dependability of the model in its 

predicted outcomes. In images that contain multiple hotspots, it has detected and localised all the points, 

portraying the ability to handle complicated scenes. The bounding boxes that distinctly outline the hotspots 

show the effectiveness of the YOLOv10 implementation towards the provision of perfect localisation. The 

fact that such qualitative results are consistent with the quantitative metrics obtained during the training 

process leads to agreement on the suitability of the model for real-world applications in monitoring and 
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performance improvement in solar PV arrays. Another notion of justification for visual consistency with 

high detection confidence is model robustness and accuracy related to thermal anomaly detection, important 

for timely maintenance interventions. 

 

Fig. 5. Qualitative result of validation and testing visualization for thermal images dataset of solar PV arrays 

The improved the feature of the YOLOv10 model in solar PV arrays to detect hotspots has a huge 

impact on maintenance and operational efficiency associated with solar power systems. The more precise 

detection of hotspots makes it possible to take preventive action in time and thus avoid any possible 

damages and, consequently, prevent the chances of severe faults that could throttle the production of 

electrical energy. As the first step in dealing with these thermal anomalies, the maintenance crew conducts 

the most partial repair strategies, which consequently prolong the functional lifespan and optimise the 

performance of the system. In addition, this leads to more production of energy and higher returns on 

investments. Furthermore, if a high-tech detection system is put in place, the concurrent losses due to 

rooftop downtime and maintenance will drastically diminish, providing the solar power unit with a path to 

being successful and sustainable. 

Despite such promising results, several limitations were encountered during the course of this 

experiment. As the quality of thermal images fluctuates broadly because of weather conditions, time of day, 
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or different camera specifications, accuracy in detection becomes difficult to maintain. Cloud conditions, 

other general environmental conditions, or dust deposited on panels may mask the hotspots and give 

negative false or reduced precision in hotspot detection [5]. Moreover, the dataset used for training the 

model was limited in diversity, which might affect the generalisability of the model to different PV array 

configurations or geographic locations. These factors highlight the need for a more robust dataset and 

further refinement of the model to handle diverse conditions effectively [22]. 

Future studies can focus on various paths for further enhancement of the present methodology. Firstly, 

increasing the dataset to a wider range of thermal images taken under different environmental conditions 

will increase the robustness and applicability of the model. The use of advanced image processing to reduce 

variability in image quality may help further improve detection accuracy. Furthermore, the research on how 

YOLOv10 can be combined with other deep learning models, such as CNNs, which are tailored to extract 

specific image features, may lead to some synergistic benefits in detecting hotspots [17][9][10]. Other than 

hotspot detection, future studies can apply this framework to the detection of different fault types in PV 

arrays, like microcracks or delamination, which will extend the scope and versatility of the system. Finally, 

actual implementation of the model in the real-time monitoring framework and evaluation of its efficiency 

in live conditions would mean a lot regarding its practical usefulness and reliability in real-life applications. 

5. CONCLUSION 

In conclusion, this study demonstrates the efficiency of the YOLOv10 model in hotspot detection from 

thermal images of solar PV arrays, considering the evident enhancement in accuracy and efficiency. This 

investigation very clearly pointed out that early detection of hotspots is crucial in keeping a solar 

photovoltaic system in optimal performance without energy losses and not damaging the system's hardware. 

By leveraging the architecture of YOLOv10, quite impressive recall and precision have been achieved. It 

actually means that the model gives a good result even if minor anomalies are detected on the thermal 

images. The core lies in the diversity of the carefully curated and annotated datasets that practice making 

the model detect multiple patterns of hotspots under real-world circumstances. Another big thing the study 

accomplished was that it could fine-tune YOLOv10 for thermal imaging tasks, until now having some 

complications in most tasks regarding quality and image differences in different ambient conditions. The 

model's evaluation metrics are at mAP50 of 0.91, while at mAP50-95, it is 0.592-further underpin the ability 

to offer good accuracy and reliability in the detection much needed for proactive maintenance strategies in 

solar PV systems. This training procedure, associated with extensive data preprocessing and 

hyperparameter optimisation, greatly improved model generalisation capability, hence widening its 

operational scope with regard to a good number of operational scenarios. This kind of advanced detection 

of hotspots is very helpful to solar power industry practitioners. Higher accuracy with regard to hotspot 

detection should improve the system reliability of the solar power plant, thereby economising on 

maintenance costs and maximising power generation. What is supported apart from the quick inference 

capability of YOLOv10 is the in-time observation features. These can prompt issue-driven investigations. 

Perhaps other scholars may get inspired by their permissions, which expand the possibility for a number of 

further research directions. Increasing the dataset with more types of images will significantly improve the 

robustness of the model. More general fault detection may approach further accuracy with the integration 

of more sensor information and the application of ensemble learning methods. Applications of the technique 

will become widespread and include monitoring wind turbines, assessing grid infrastructure, and many 

other applications across all areas of renewable energy industries. This thus reveals that there exists a great 

potential for deep learning-based transformation towards augmenting ongoing maintenance and operational 

efficiencies within solar photovoltaic arrays to further develop more rational alternatives for sustainable 

energy. 
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