

UNIVERSITI TEKNOLOGI MARA

INVESTIGATION ON BREAKDOWN VOLTAGE OF TIO₂ DOPED AL₂O₃ VIA SPIN COATING METHOD

ALYAA AINAA BINTI ABDULLAH

Thesis submitted in fulfilment of the requirements for the degree of Bachelor of Engineering (Hons) Electrical Engineering

Faculty of Electrical Engineering

JULY 2018

ACKNOWLEDGMENT

In the name of Allah S.W.T, I would like to express my gratitude to all the parties that gave supports in terms of time and energy along the way to be able to finish and complete this research. I have taken so much effort to finish this research. However, it would not be possible to achieve this level without the help and support from many individual. I would like to extend our highest sincere thanks to all of them.

First of all, . I would like to thank to my supervisor, Dr Puteri Sarah Binti Mohamad Saad for guiding me along this way to complete this research, for sharing expertise, and sincere and valuable guidance and encouragement extended to me. The supervision and support that they gave truly help in the progression and smoothness this research. The cooperation is much indeed appreciated.

Secondly, my grateful thanks to beloved parents, Abdullah Bin Ibrahim and

who always motivate and advise me through this thick and thin. I also would like to thank to all fellow friends for their helps in terms of advices and the knowledge that being shared during this research was make is truly appreciate.

Lastly, I also would like to extend the highest sincere to all the technician and assistant engineer at the High Voltage Lab and Net Lab for helping and guiding me throughout this research.

ABSTRACT

Thin films of TiO₂ doped Al₂O₃ were prepared by spin coating method on glass substrate. The main objectives of this project are to prepare the TiO₂ doped Al₂O₃ thin films for measuring the breakdown voltage and to characterize the electrical, physical and optical properties TiO₂ doped Al₂O₃ of thin films. Characterization of the thin films were carried out using different characterization techniques such as X-Ray diffraction (XRD), breakdown voltage and UV-Vis. Different percentages of Aluminum Oxide (Al₂O₃) in TiO₂ were 0at%, 2at%, 4at%, 6at%, 8at% and 10at%. The thin films were annealed at 450°. The results show the breakdown voltage increased as the percentage of the atomic of Al₂O₃ increased. The XRD analysis of the thin films showed amorphous behaviors. The anatase phase transformation of TiO₂ was formed as the thin films annealed at 450°. Further analysis on UV-Vis also has found that the percentage of transmittance of TiO₂ doped Al₂O₃ increased as the percentage of the percentage of atomic of Al₂O₃ increased in contrast to the transmittance spectrum, the percentage of absorbance of TiO₂ doped Al₂O₃.

TABLE OF CONTENTS

CONT	ENTS	PAGES
APPRO	VAL	i
DECLA	RATION	ii
ACKNO	WLEDGMENT	iii
ABSTR	АСТ	iv
ABBRE	VIATION	ix
СНАРТ	ER 1	
INTRO	DUCTION	
1.1	BACKGROUND OF STUDY	
1.2	PROBLEM STATEMENT	11
1.3	OBJECTIVES	12
1.4	SCOPE OF WORK	12
1.5	THESIS ORGANIZATION	
СНАРТ	ER 2	14
LITERA	ATURE REVIEW	14
2.1	TITANIUM DIOXIDE (TIO ₂)	14
2.2	DOPANTS	15
2.3	BREAKDOWN VOLTAGE	17
2.4	SPIN COATING METHOD	
2.5	SUMMARY	19
METHO	DDOLOGY	20
3.1	THE OVERALL PROCESS OF THE PROJECT	20
3.2	PREPARATION OF GLASS SUBSTRATE	22
3.3	CLEANING PROCESS OF THE GLASS SUBSTRATE	22
3.3.1	Cleaning process	23
3.3.2	Blowing process	25
3.4	PREPARATION OF TIO ₂ SOLUTION	
3.5	PREPARATION OF TIO ₂ SOLUTION DOPED AL ₂ O ₃	29
3.6	DEPOSITION OF TIO2 THIN FILMS	

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF STUDY

Titanium dioxide (TiO₂) thin films have received a great deal of interest due to an important number of applications such as electrochromic, photovoltaic and microelectronic devices. Its electron transport properties remain back due to its high resistivity. Although many structural and optical studies were carried out for TiO₂, the impurity band conduction may become significant even above room temperature due to TiO₂ semiconductor thin films having a high energy gap. Electrical conductivity processes are mainly due hopping via impurity centers, while the contribution of intrinsic free carriers is negligible even at high temperatures. The measured conductivity of TiO₂ thin films is generally explained in terms of the simple thermally activated conduction at high temperatures (T > 300 K).

Doping is a reversible produce which could be carried out chemically or electrochemically with oxidation or reduction by accepting or donating the electrons respectively and thus results to the positive or negative charges. By adding the dopants such as Nb, Cr, Sn, Pt, Zn, Al, La and Y, it has been showed that the sensitivity of TiO_2 can be improved. TiO_2 is well known that the impurity doping induces substantial modifications in electrical and optical properties of semiconductor materials. Increased in conductivity, slowing down anatase to rutile transformation and reducing grain growth are the most important effects of dopants addition in TiO_2 Recent studies has reported that the N-doping shift that absorption band associated with the band gap narrowing. The process