NITROBACTER ACT AS BIOFERTILIZER COMPOSER

MOHAMMAD HAFIIZHULLAH BIN SYUIB

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Sciences (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2022

This Final Year Project Report entitled "Nitrobacter act as Bio-Fertilizer Composer" was submitted by Mohammad Hafiizhullah Bin Syuib in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

> Dr. Sharizal Hassan Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 02600, Arau Perlis

En. Syukri Bin Noor Azman Project Coordinator B.Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis Pn. Zalina Binti Zainal Abidin Head of Programme B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau Perlis

Date: July 2022

ABSTRACT

The properties of Nitrobacter in nitrogen fixation under the soil was known well around the world, which is Nitrobacter act as microbe agent that oxidize nitrite to nitrate, which is primary source of inorganic nitrogen to plants Photosynthesis and nitrogen fixation are the foundation of all life on earth. According to current knowledge, no plant can fix nitrogen on its own. Some plants, primarily legumes, use symbiotic anaerobic bacteria to fix nitrogen (mainly rhizobia). The dinitrogenase catalyses the reaction-splitting triple-bond inert atmospheric nitrogen (N (2)) into an organic ammonia molecule (NH (3)), which is the nature of biological nitrogen fixing. It is discovered that every known nitrogenase is bacterial, multi-complex, and typically oxygen-liable. It should come as no surprise that creating autonomous nitrogen-fixing plants would take some time since it calls for the building of a complicated enzyme and the creation of anaerobic conditions. However, the more effective and irreversible aerobic variant that requires O2 has almost probably supplanted the anaerobic enzyme in many processes due to the development of protein catalysts (2). On the other hand, nature has demonstrated several instances of evolutionary convergence where an enzyme that catalyses a highly specialized, O (2)-requiring activity has a counterpart that is oxygen-independent and can perform the same reaction in anoxic conditions. I try to take the reader on a simplified path from the typical nitrogenase complex to a potentially simpler version of a light-utilizing nitrogenase that has not yet been identified in this review.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	VI
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	viii
ABSTRACT ABSTRAK	ix
ADDIKAK	Х
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problem statement	4
1.3 Significance of study	5
1.4 Objectives of study	6
CHAPTER 2 LITERATURE REVIEW	
2.1 Introduction	8
2.2 Toxicity of mercury	8
2.2.1 Cold vapour Atomic Absorption Spectrometry	8
CHAPTER 3 METHODOLOGY	
3.1 Materials	20
3.1.1 Chemicals	20
3.2 Methods	20
CHAPTER 4 RESULTS AND DISCUSSION	35
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	50
CITED REFERENCES	53
APPENDICES	55
CURRICULUM VITAE	60

LIST OF FIGURES

Table	Caption	Page
1	Nitrogen cycle	11
2	Commammox in nitrogen cycle	12
3	Different between streak plate method and pour plate method	13
4	Quadrant method of streaking for isolation.	18
5	Soxhlet apparatus used in Biology Lab 5	23
6	The agar plate after strike method with the extraction sample	24
7	Observation of Nitrobacter in agar plate under microscope 100 X magnification	24
8	Nitrobacter culture on agar plate	25
9	Tools to measure the value of soil pH	26
10	Four different labeled okra plant	27
11	Okra plant as the subject	28
12	Nitrobacter solution	29
13	Nitrobacter fuse with CaCO ₃	30
14	Grid Count Method	34
15	Sample at 29 th May 2022	36
16	Sample at 4 th June 2022	36