ANTIBACTERIAL ACTIVITY OF TERRESTRIAL SNAIL MUCUS (Achatina fulica) MEDIATED GREEN SYNTHESIS OF SILVER NANOPARTICLES

FATIN NUR FATEHA BINTI S ABDUL JALIL

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 202

This Final Year Project Report entitled "Antibacterial Activity of Terrestrial Snail Mucus (*Achatina Fulica*) Mediated Green Synthesis of Silver Nanoparticles" was submitted by Fatin Nur Fateha Binti S Abdul Jalil in partial fulfilment of the requirement for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences and was approved by

> Dr. Nur Maisarah Sarizan Supervisor Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis

Muhammad Syukri Noor Azman Project Coordinator Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis Pn. Zalina Zainal Abidin Head Centre of Programme Faculty of Applied Sciences Universiti Teknologi MARA 02600 Arau, Perlis

Date: JULY 2022

ABSTRACT

ANTIBACTERIAL ACTIVITY OF TERRESTRIAL SNAIL MUCUS (Achatina fulica) MEDIATED GREEN SYNTHESIS OF SILVER NANOPARTICLES

The growth and bacterial resistance necessitate the development of new antiinfective agents, with silver nanoparticles (AgNPs) exhibiting particularly intriguing features. AgNPs exert antibacterial activity via a variety of molecular pathways. This study carried out antibacterial activity of a recently described type of AgNPs using *A. fulica* snail mucus (SM) where their protein determined. Characterization of AgNPs-SM was done by UV-Visible spectrophotometer (UV-Vis), Fourier-Transform Infrared spectroscopy (FTIR) analysis and Scanning Electron Microscopy (SEM). Their visible colour changes determined along with UV-Vis absorption spectrum plasmon peak at 404.9 nm showed the formation of AgNPs. The FTIR spectra was observed the variation of functional groups existing and the SEM confirmed the AgNPs physical shape in nanoscale size. Antibacterial activities mediated AgNPs was conducted by disc diffusion method with different concentrations. The outcome from the study showed that AgNPs-SM had significant antibacterial activity against *Bacillus licheniformis* (Gram-positive bacteria) and *Escherichia coli* (Gram-negative bacteria).

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Significance of study	4
1.4	Objectives of study	6

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction to Mollusca	7
	2.1.1 Gastropods	8
2.2	Terrestrial snails	10
	2.2.1 Achatina fulica	13
2.3	Snail's mucus	14
	2.3.1 Chemical properties of snail's mucus	16
	2.3.2 Snail's mucus applications	16
2.4	Silver nanoparticles (AgNPs)	20
	2.4.1 Synthesis of AgNPs	21
	2.4.2 AgNPs applications	23

CHAPTER 3 METHODOLOGY

3.1	Exper	imental design	25
3.2	Samp	le collection	26
3.3	Protei	n concentration determination	27
3.4	Green	synthesis of silver nanoparticles	28
3.5	Chara	cterization of synthesized silver nanoparticles	29
	3.5.1	UV-visible spectroscopy	29
	3.5.2	Scanning electron microscopy (SEM)	30
	3.5.3	Fourier Transform Infrared (FTIR) spectroscopy	31
3.6	Antib	acterial assay	32
	3.6.1	Nutrient agar and nutrient broth preparation	32
	3.6.2	Inoculum preparation	33
	3.6.3	Disk diffusion test	33
3.7	Statist	tical analysis	34

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Protein concentration determination of A. fulica mucus	35
4.2	Green synthesis of AgNPs	36
4.3	UV-Visible spectroscopy analysis of snail mucus-AgNPs	37
4.4	Scanning electron microscopy (SEM) analysis of snail mucus- AgNPs	38
4.5	Fourier Transform Infrared (FT-IR) spectroscopy analysis of snail mucus-AgNPs	39
4.6	Antibacterial activity of snail mucus-AgNPs	40
CHA	APTER 5 CONCLUSION AND RECOMMENDATIONS	43
CIT	ED REFERENCES	45
APP	PENDICES	47
CUI	RRICULUM VITAE	53
FYP	P GANTT-CHART	55